Connect with us

News

How to Decode Your Tesla Model S VIN

Published

on

Tesla Model S VIN on TouchscreenWith the Model X delivery around the corner, the recent announcement of the Model 3 and the much anticipated unveiling of the “D”, we thought it would be fun decode the Model S Vehicle Identification Number (VIN) and take a wild guess on how future VINs may look like.

Finding your VIN

The VIN is a 17 character alphanumeric fingerprint to your vehicle often found on the lower left corner of your dashboard and against the windshield. Law requires that it be placed in a visibly prominent spot on the car and for that reason it’s not a secret code, dispelling the myth that your VIN is a confidential identifier. I’d hate to break it to you but your VIN is not a secret.

The Tesla Model S VIN can also be viewed by pressing the Tesla logo at the top of the 17″ display. The VIN is required by DMV and also when registering your vehicle with the insurance company because it provides a wealth of information about your vehicle.

Decoding the Tesla Model S VIN

Referencing Tesla’s filing with the National Highway Traffic Safety Administration (NHTSA), here’s how we can decode the Model S VIN.

VIN Decode

The first digit in the VIN indicates the vehicle’s country of origin which can also be its assembly location. Referencing CarFax we know that 5 represents the country code for the USA. The second character, Y, is for Tesla Motors as the Manufacturer. The third character, J, represents the vehicle type. Things start to become even more detailed as we start moving into the Vehicle Descriptor Section.

Advertisement

VIN Details

The make of vehicle is the first character within the Vehicle Descriptor Section. S is for the Model S, R for the Roadster and following this pattern we should expect to see codes of X, 3, and possibly D down the road.

The next character, A, is the body type and represents a 5 door hatchback with left hand drive. Right hand drive Model S’ use the letter B. The restraint system has had a few different variations but a 1 represents Manual Type 2 USA Seat Belts while Dual Front Airbags, Front/Rear Side Airbags, Knee Airbags etc. utilize their own set of codes.

The battery type, H, is for the 85kWh battery, and S is for the 60kWh battery. The final digit indicates the number of drive units (motors). This will be 2 for the Model X. Based on this Tesla Motors NHTSA VIN filing, it’s almost certain that a dual motor Model S will soon be announced. We’ll expect to see a 2 in the VIN of  the Model S “D”.

Tesla-Motors-VIN-NHTSA

The next code labeled Check Digit is just a way for agencies to verify the VIN through a mathematical algorithm. The year is a code with E representing 2014, F for 2015 etc.

Advertisement

The assembly plant is F which stands for Fremont, CA and there appear to be other plant codes they’ve used in the past. As Tesla starts assembly in other countries we’ll expect to see new codes here.

The first character of the production number indicates the stage of production with a few interesting codes:

Production CodesMine is a P for production level. The final 5 digits are a unique serial number. People often abbreviate their VIN with just the production number, so P36801 in my example.

The Tesla Motors VIN is constantly evolving as the electric carmaker continues to expand their lineup and into different markets. Don’t for one second think it’s just simple letter or number because in reality each one represents exciting new changes for Tesla Motors.

What does your VIN say about your car? Let us know in the comments below.

Advertisement

"Rob's passion is technology and gadgets. An engineer by profession and an executive and founder at several high tech startups Rob has a unique view on technology and some strong opinions. When he's not writing about Tesla

Advertisement
Comments

News

Tesla Cybercab spotted with interesting charging solution, stimulating discussion

The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.

Published

on

Credit: What's Inside | X

Tesla Cybercab units are being tested publicly on roads throughout various areas of the United States, and a recent sighting of the vehicle’s charging port has certainly stimulated some discussions throughout the community.

The Cybercab is geared toward being a fully-autonomous vehicle, void of a steering wheel or pedals, only operating with the use of the Full Self-Driving suite. Everything from the driving itself to the charging to the cleaning is intended to be operated autonomously.

But a recent sighting of the vehicle has incited some speculation as to whether the vehicle might have some manual features, which would make sense, but let’s take a look:

The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.

Advertisement

Now, it is important to remember these are prototype vehicles, and not the final product. Additionally, Tesla has said it plans to introduce wireless induction charging in the future, but it is not currently available, so these units need to have some ability to charge.

However, there are some arguments for a charging system like this, especially as the operation of the Cybercab begins after production starts, which is scheduled for April.

Wireless for Operation, Wired for Downtime

It seems ideal to use induction charging when the Cybercab is in operation. As it is for most Tesla owners taking roadtrips, Supercharging stops are only a few minutes long for the most part.

The Cybercab would benefit from more frequent Supercharging stops in between rides while it is operating a ride-sharing program.

Advertisement

Tesla wireless charging patent revealed ahead of Robotaxi unveiling event

However, when the vehicle rolls back to its hub for cleaning and maintenance, standard charging, where it is plugged into a charger of some kind, seems more ideal.

In the 45-minutes that the car is being cleaned and is having maintenance, it could be fully charged and ready for another full shift of rides, grabbing a few miles of range with induction charging when it’s out and about.

Induction Charging Challenges

Induction charging is still something that presents many challenges for companies that use it for anything, including things as trivial as charging cell phones.

Advertisement

While it is convenient, a lot of the charge is lost during heat transfer, which is something that is common with wireless charging solutions. Even in Teslas, the wireless charging mat present in its vehicles has been a common complaint among owners, so much so that the company recently included a feature to turn them off.

Production Timing and Potential Challenges

With Tesla planning to begin Cybercab production in April, the real challenge with the induction charging is whether the company can develop an effective wireless apparatus in that short time frame.

It has been in development for several years, but solving the issue with heat and energy loss is something that is not an easy task.

In the short-term, Tesla could utilize this port for normal Supercharging operation on the Cybercab. Eventually, it could be phased out as induction charging proves to be a more effective and convenient option.

Advertisement
Continue Reading

News

Tesla confirms that it finally solved its 4680 battery’s dry cathode process

The suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Published

on

tesla 4680
Image used with permission for Teslarati. (Credit: Tom Cross)

Tesla has confirmed that it is now producing both the anode and cathode of its 4680 battery cells using a dry-electrode process, marking a key breakthrough in a technology the company has been working to industrialize for years. 

The update, disclosed in Tesla’s Q4 and FY 2025 update letter, suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Dry cathode 4680 cells

In its Q4 and FY 2025 update letter, Tesla stated that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process. The confirmation addresses long-standing questions around whether Tesla could bring its dry cathode process into sustained production.

The disclosure was highlighted on X by Bonne Eggleston, Tesla’s Vice President of 4680 batteries, who wrote that “both electrodes use our dry process.”

Advertisement

Tesla first introduced the dry-electrode concept during its Battery Day presentation in 2020, pitching it as a way to simplify production, reduce factory footprint, lower costs, and improve energy density. While Tesla has been producing 4680 cells for some time, the company had previously relied on more conventional approaches for parts of the process, leading to questions about whether a full dry-electrode process could even be achieved.

4680 packs for Model Y

Tesla also revealed in its Q4 and FY 2025 Update Letter that it has begun producing battery packs for certain Model Y vehicles using its in-house 4680 cells. As per Tesla: 

“We have begun to produce battery packs for certain Model Ys with our 4680 cells, unlocking an additional vector of supply to help navigate increasingly complex supply chain challenges caused by trade barriers and tariff risks.”

The timing is notable. With Tesla preparing to wind down Model S and Model X production, the Model Y and Model 3 are expected to account for an even larger share of the company’s vehicle output. Ensuring that the Model Y can be equipped with domestically produced 4680 battery packs gives Tesla greater flexibility to maintain production volumes in the United States, even as global battery supply chains face increasing complexity.

Advertisement
Continue Reading

Elon Musk

Tesla Giga Texas to feature massive Optimus V4 production line

This suggests that while the first Optimus line will be set up in the Fremont Factory, the real ramp of Optimus’ production will happen in Giga Texas.

Published

on

Credit: Tesla/YouTube

Tesla will build Optimus 4 in Giga Texas, and its production line will be massive. This was, at least, as per recent comments by CEO Elon Musk on social media platform X.  

Optimus 4 production

In response to a post on X which expressed surprise that Optimus will be produced in California, Musk stated that “Optimus 4 will be built in Texas at much higher volume.” This suggests that while the first Optimus line will be set up in the Fremont Factory, and while the line itself will be capable of producing 1 million humanoid robots per year, the real ramp of Optimus’ production will happen in Giga Texas. 

This was not the first time that Elon Musk shared his plans for Optimus’ production at Gigafactory Texas. During the 2025 Annual Shareholder Meeting, he stated that Giga Texas’ Optimus line will produce 10 million units of the humanoid robot per year. He did not, however, state at the time that Giga Texas would produce Optimus V4. 

“So we’re going to launch on the fastest production ramp of any product of any large complex manufactured product ever, starting with building a one-million-unit production line in Fremont. And that’s Line one. And then a ten million unit per year production line here,” Musk stated. 

Advertisement

How big Optimus could become

During Tesla’s Q4 and FY 2025 earnings call, Musk offered additional context on the potential of Optimus. While he stated that the ramp of Optimus’ production will be deliberate at first, the humanoid robot itself will have the potential to change the world. 

“Optimus really will be a general-purpose robot that can learn by observing human behavior. You can demonstrate a task or verbally describe a task or show it a task. Even show it a video, it will be able to do that task. It’s going to be a very capable robot. I think long-term Optimus will have a very significant impact on the US GDP. 

“It will actually move the needle on US GDP significantly. In conclusion, there are still many who doubt our ambitions for creating amazing abundance. We are confident it can be done, and we are making the right moves technologically to ensure that it does. Tesla, Inc. has never been a company to shy away from solving the hardest problems,” Musk stated. 

Advertisement
Continue Reading