Connect with us

News

DeepSpace: Chinese rocket startups make tangible progress on the path to orbital launch

Published

on

In the last six or so months, a range of small Chinese rocket startups have begun to make serious progress in the nascent commercial industry, including several inaugural orbital launch attempts, extensive propulsion testing, and more. Rising above the fray are a handful of uniquely notable companies: Landspace, Linkspace, OneSpace, and iSpace (creative, I know).

While the names leave something lacking, several companies have truly impressive ambitions and can already point to major tech development programs as evidence for their follow-through. Linkspace is arguably the most interesting company with respect to what they are doing today, while Landspace has the ambition and expertise to build and launch some truly capable rockets in the near-term.

OneSpace & iSpace

  • OneSpace recently made its first attempt at orbital launch after completing an OS-M1 rocket, nominally capable of placing 200 kg (450 lb) in a 300 km (190 mi) low Earth orbit (LEO). The March 2019 attempt failed 45 seconds into launch, likely caused by an improperly-installed gyroscope that guided the rocket in the wrong direction.
    • This failure is by no means a bad thing. Reaching orbit on one’s first try is extraordinarily rare, particularly for private companies with no prior experience developing launch vehicles. SpaceX’s first three Falcon 1 launches failed before success was found on Flight 4. Rocket Lab’s Electron launch debut was forced to abort before reaching orbit due to faulty third-party communications equipment.
    • OneSpace has several additional suborbital OS-X launches and may be able to attempt one additional OS-M1 orbital launch before the end of 2019.
    • Down the road, the company wants to enhance its payload capabilities by adding additional solid rocket strap-on boosters to OS-M1 (designated M2 and M4). OS-M4 would be able to launch as much as 750 kg (1650 lb) into LEO.
  • iSpace is in a similar boat. Its Hyperbola-1 rocket relies on three solid stages and a liquid fourth stage and is designed to place 300 kg (660 lb) into LEO. iSpace has plans to attempt the company’s first orbital launch as early as June 2019.
    • Having already raised more than $100M in investment, iSpace also has strong backing for the development of its next-gen Hyperbola-2 rocket. The methalox-based vehicle will have a reusable booster capable of vertical landings and should be able to launch almost 2 tons to LEO. The rocket’s first launch is expected to occur no earlier than late 2020.

Linkspace

  • In April 2019, Linkspace began flight-testing a sort of miniature version of SpaceX’s Falcon 9 Grasshopper testbed. Known as NewLine Baby, the small suborbital prototype is designed to improve the company’s technical familiarity with vertically landing orbital-class rocket boosters after missions. Thus far, hop testing has been a great success.
    • Baby weighs 1.5 t (1100 lb), is 8.1m (27 ft) tall, and is powered by five liquid methane and oxygen (methalox) rocket engines.
  • The company hopes to transfer the knowledge gained into NewLine-1, a partially reusable orbital-class rocket designed to place 200 kg in LEO. Linkspace could attempt their first orbital launch as early as 2021.
    • The two-stage rocket’s booster would separate a few minutes into launch and attempt a vertical landing on a pad or boat, the same approach SpaceX has used with unprecedented success.
    • The similarities with SpaceX’s Falcon 9 are honestly not the worst thing. SpaceX has no patent on vertically landing rockets and has never attempted to corner the industry. Copying a successful new paradigm is certainly better than doing nothing.
      • (For the record, Blue Origin did the exact opposite and attempted to patent vertically landing rockets at sea in 2014, before the company had conducted a single serious launch and at the same time as SpaceX was already planning barge recoveries of Falcon 9 boosters.)
    • One could even say that Linkspace and several other Chinese companies are actually doing better than industry heavyweights like ULA and Arianespace by simply embracing the new paradigm, as opposed to denial, pearl-clutching, and half-measure responses.

Landspace

  • Finally, there is Landspace. Perhaps the most exciting company of the bunch, Landspace is developing a fairly large methalox launch vehicle named ZhuQue-2 (ZQ-2). Powered by several fairly large TQ-12 liquid rocket engines, ZQ-2 is designed to launch up to 4t (8800 lb) to an orbit of 200 km (120 mi) and would produce up to 2650 kN (600,000 lbf) of thrust at liftoff, about a third of SpaceX’s Falcon 9.
    • The two-stage ZQ-2 is not currently being designed for reusability, but an upgraded three-stage variant (ZQ-2A) would feature a much larger payload fairing and improve payload performance to 200 km by 50%, from 4t to 6t.
  • Landspace will attempt ZQ-2’s inaugural launch as early as 2020. Critically, the company is just completed the first full-scale prototype of the TQ-12 engine meant to power the rocket and could begin static fire tests just a month or two from now.
    • Tianque-12 (TQ-12) is a fairly unique engine. Powered by liquid methane and oxygen (methalox), TQ-12 uses a gas-generator propulsion cycle and is designed to produce up to 80t (175,000 lbf) of thrust. In a sense, TQ-12 is basically a slightly less powerful methalox variant of SpaceX’s Merlin 1D engine.
    • The fact that Landspace is already in a position to begin static fire tests of the engine powering its next-gen rocket bodes very well for the company’s future plans. At a minimum, it likely means that Landspace is much closer to offering multi-ton commercial launch services compared to its competitors.
  • Aside from its next-gen ambitions, Landspace has also developed a much smaller three-stage rocket known as ZQ-1. Capable of launching up to 300 kg into LEO, ZQ-1 nearly reached orbit on its October 2018 launch debut, failing midway through its third-stage burn.
  • For now, the Chinese launch startup scene is downright frenetic. The title of “first private Chinese company to reach orbit” has yet to be awarded, and more than half a dozen groups are practically racing to secure it.

Mission Updates:

  • SpaceX’s CRS-17 Cargo Dragon spacecraft successfully rendezvoused and berthed with the ISS on May 6th.
  • Potentially less than two weeks after the Falcon 9’s May 4th CRS-17 launch, SpaceX’s first dedicated Starlink mission is scheduled to occur as early as May 13th, although delays of a few days are likely.
  • SpaceX’s second West Coast launch of 2019 – carrying Canada’s Radarsat Constellation – finally has an official launch date – June 11th. The mission will reuse Falcon 9 B1051.
  • Falcon Heavy’s third launch remains tentatively scheduled no earlier than June 22nd.

Photo of the Week

Falcon 9 B1056 returned to dry ground less than 24 hours after launching CRS-17 and landing aboard drone ship Of Course I Still Love You (OCISLY). (Tom Cross)

 

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Tesla’s Elon Musk: 10 billion miles needed for safe Unsupervised FSD

As per the CEO, roughly 10 billion miles of training data are required due to reality’s “super long tail of complexity.” 

Published

on

Credit: @BLKMDL3/X

Tesla CEO Elon Musk has provided an updated estimate for the training data needed to achieve truly safe unsupervised Full Self-Driving (FSD). 

As per the CEO, roughly 10 billion miles of training data are required due to reality’s “super long tail of complexity.” 

10 billion miles of training data

Musk comment came as a reply to Apple and Rivian alum Paul Beisel, who posted an analysis on X about the gap between tech demonstrations and real-world products. In his post, Beisel highlighted Tesla’s data-driven lead in autonomy, and he also argued that it would not be easy for rivals to become a legitimate competitor to FSD quickly. 

“The notion that someone can ‘catch up’ to this problem primarily through simulation and limited on-road exposure strikes me as deeply naive. This is not a demo problem. It is a scale, data, and iteration problem— and Tesla is already far, far down that road while others are just getting started,” Beisel wrote. 

Musk responded to Beisel’s post, stating that “Roughly 10 billion miles of training data is needed to achieve safe unsupervised self-driving. Reality has a super long tail of complexity.” This is quite interesting considering that in his Master Plan Part Deux, Elon Musk estimated that worldwide regulatory approval for autonomous driving would require around 6 billion miles. 

Advertisement
-->

FSD’s total training miles

As 2025 came to a close, Tesla community members observed that FSD was already nearing 7 billion miles driven, with over 2.5 billion miles being from inner city roads. The 7-billion-mile mark was passed just a few days later. This suggests that Tesla is likely the company today with the most training data for its autonomous driving program. 

The difficulties of achieving autonomy were referenced by Elon Musk recently, when he commented on Nvidia’s Alpamayo program. As per Musk, “they will find that it’s easy to get to 99% and then super hard to solve the long tail of the distribution.” These sentiments were echoed by Tesla VP for AI software Ashok Elluswamy, who also noted on X that “the long tail is sooo long, that most people can’t grasp it.”

Continue Reading

News

Tesla earns top honors at MotorTrend’s SDV Innovator Awards

MotorTrend’s SDV Awards were presented during CES 2026 in Las Vegas.

Published

on

Credit: Tesla China

Tesla emerged as one of the most recognized automakers at MotorTrend’s 2026 Software-Defined Vehicle (SDV) Innovator Awards.

As could be seen in a press release from the publication, two key Tesla employees were honored for their work on AI, autonomy, and vehicle software. MotorTrend’s SDV Awards were presented during CES 2026 in Las Vegas.

Tesla leaders and engineers recognized

The fourth annual SDV Innovator Awards celebrate pioneers and experts who are pushing the automotive industry deeper into software-driven development. Among the most notable honorees for this year was Ashok Elluswamy, Tesla’s Vice President of AI Software, who received a Pioneer Award for his role in advancing artificial intelligence and autonomy across the company’s vehicle lineup.

Tesla also secured recognition in the Expert category, with Lawson Fulton, a staff Autopilot machine learning engineer, honored for his contributions to Tesla’s driver-assistance and autonomous systems.

Tesla’s software-first strategy

While automakers like General Motors, Ford, and Rivian also received recognition, Tesla’s multiple awards stood out given the company’s outsized role in popularizing software-defined vehicles over the past decade. From frequent OTA updates to its data-driven approach to autonomy, Tesla has consistently treated vehicles as evolving software platforms rather than static products.

Advertisement
-->

This has made Tesla’s vehicles very unique in their respective sectors, as they are arguably the only cars that objectively get better over time. This is especially true for vehicles that are loaded with the company’s Full Self-Driving system, which are getting progressively more intelligent and autonomous over time. The majority of Tesla’s updates to its vehicles are free as well, which is very much appreciated by customers worldwide.

Continue Reading

Elon Musk

Judge clears path for Elon Musk’s OpenAI lawsuit to go before a jury

The decision maintains Musk’s claims that OpenAI’s shift toward a for-profit structure violated early assurances made to him as a co-founder.

Published

on

Gage Skidmore, CC BY-SA 4.0 , via Wikimedia Commons

A U.S. judge has ruled that Elon Musk’s lawsuit accusing OpenAI of abandoning its founding nonprofit mission can proceed to a jury trial. 

The decision maintains Musk’s claims that OpenAI’s shift toward a for-profit structure violated early assurances made to him as a co-founder. These claims are directly opposed by OpenAI.

Judge says disputed facts warrant a trial

At a hearing in Oakland, U.S. District Judge Yvonne Gonzalez Rogers stated that there was “plenty of evidence” suggesting that OpenAI leaders had promised that the organization’s original nonprofit structure would be maintained. She ruled that those disputed facts should be evaluated by a jury at a trial in March rather than decided by the court at this stage, as noted in a Reuters report.

Musk helped co-found OpenAI in 2015 but left the organization in 2018. In his lawsuit, he argued that he contributed roughly $38 million, or about 60% of OpenAI’s early funding, based on assurances that the company would remain a nonprofit dedicated to the public benefit. He is seeking unspecified monetary damages tied to what he describes as “ill-gotten gains.”

OpenAI, however, has repeatedly rejected Musk’s allegations. The company has stated that Musk’s claims were baseless and part of a pattern of harassment.

Advertisement
-->

Rivalries and Microsoft ties

The case unfolds against the backdrop of intensifying competition in generative artificial intelligence. Musk now runs xAI, whose Grok chatbot competes directly with OpenAI’s flagship ChatGPT. OpenAI has argued that Musk is a frustrated commercial rival who is simply attempting to slow down a market leader.

The lawsuit also names Microsoft as a defendant, citing its multibillion-dollar partnerships with OpenAI. Microsoft has urged the court to dismiss the claims against it, arguing there is no evidence it aided or abetted any alleged misconduct. Lawyers for OpenAI have also pushed for the case to be thrown out, claiming that Musk failed to show sufficient factual basis for claims such as fraud and breach of contract.

Judge Gonzalez Rogers, however, declined to end the case at this stage, noting that a jury would also need to consider whether Musk filed the lawsuit within the applicable statute of limitations. Still, the dispute between Elon Musk and OpenAI is now headed for a high-profile jury trial in the coming months.

Continue Reading