Connect with us

News

DeepSpace: Chinese rocket startups make tangible progress on the path to orbital launch

Published

on

In the last six or so months, a range of small Chinese rocket startups have begun to make serious progress in the nascent commercial industry, including several inaugural orbital launch attempts, extensive propulsion testing, and more. Rising above the fray are a handful of uniquely notable companies: Landspace, Linkspace, OneSpace, and iSpace (creative, I know).

While the names leave something lacking, several companies have truly impressive ambitions and can already point to major tech development programs as evidence for their follow-through. Linkspace is arguably the most interesting company with respect to what they are doing today, while Landspace has the ambition and expertise to build and launch some truly capable rockets in the near-term.

OneSpace & iSpace

  • OneSpace recently made its first attempt at orbital launch after completing an OS-M1 rocket, nominally capable of placing 200 kg (450 lb) in a 300 km (190 mi) low Earth orbit (LEO). The March 2019 attempt failed 45 seconds into launch, likely caused by an improperly-installed gyroscope that guided the rocket in the wrong direction.
    • This failure is by no means a bad thing. Reaching orbit on one’s first try is extraordinarily rare, particularly for private companies with no prior experience developing launch vehicles. SpaceX’s first three Falcon 1 launches failed before success was found on Flight 4. Rocket Lab’s Electron launch debut was forced to abort before reaching orbit due to faulty third-party communications equipment.
    • OneSpace has several additional suborbital OS-X launches and may be able to attempt one additional OS-M1 orbital launch before the end of 2019.
    • Down the road, the company wants to enhance its payload capabilities by adding additional solid rocket strap-on boosters to OS-M1 (designated M2 and M4). OS-M4 would be able to launch as much as 750 kg (1650 lb) into LEO.
  • iSpace is in a similar boat. Its Hyperbola-1 rocket relies on three solid stages and a liquid fourth stage and is designed to place 300 kg (660 lb) into LEO. iSpace has plans to attempt the company’s first orbital launch as early as June 2019.
    • Having already raised more than $100M in investment, iSpace also has strong backing for the development of its next-gen Hyperbola-2 rocket. The methalox-based vehicle will have a reusable booster capable of vertical landings and should be able to launch almost 2 tons to LEO. The rocket’s first launch is expected to occur no earlier than late 2020.

Linkspace

  • In April 2019, Linkspace began flight-testing a sort of miniature version of SpaceX’s Falcon 9 Grasshopper testbed. Known as NewLine Baby, the small suborbital prototype is designed to improve the company’s technical familiarity with vertically landing orbital-class rocket boosters after missions. Thus far, hop testing has been a great success.
    • Baby weighs 1.5 t (1100 lb), is 8.1m (27 ft) tall, and is powered by five liquid methane and oxygen (methalox) rocket engines.
  • The company hopes to transfer the knowledge gained into NewLine-1, a partially reusable orbital-class rocket designed to place 200 kg in LEO. Linkspace could attempt their first orbital launch as early as 2021.
    • The two-stage rocket’s booster would separate a few minutes into launch and attempt a vertical landing on a pad or boat, the same approach SpaceX has used with unprecedented success.
    • The similarities with SpaceX’s Falcon 9 are honestly not the worst thing. SpaceX has no patent on vertically landing rockets and has never attempted to corner the industry. Copying a successful new paradigm is certainly better than doing nothing.
      • (For the record, Blue Origin did the exact opposite and attempted to patent vertically landing rockets at sea in 2014, before the company had conducted a single serious launch and at the same time as SpaceX was already planning barge recoveries of Falcon 9 boosters.)
    • One could even say that Linkspace and several other Chinese companies are actually doing better than industry heavyweights like ULA and Arianespace by simply embracing the new paradigm, as opposed to denial, pearl-clutching, and half-measure responses.

Landspace

  • Finally, there is Landspace. Perhaps the most exciting company of the bunch, Landspace is developing a fairly large methalox launch vehicle named ZhuQue-2 (ZQ-2). Powered by several fairly large TQ-12 liquid rocket engines, ZQ-2 is designed to launch up to 4t (8800 lb) to an orbit of 200 km (120 mi) and would produce up to 2650 kN (600,000 lbf) of thrust at liftoff, about a third of SpaceX’s Falcon 9.
    • The two-stage ZQ-2 is not currently being designed for reusability, but an upgraded three-stage variant (ZQ-2A) would feature a much larger payload fairing and improve payload performance to 200 km by 50%, from 4t to 6t.
  • Landspace will attempt ZQ-2’s inaugural launch as early as 2020. Critically, the company is just completed the first full-scale prototype of the TQ-12 engine meant to power the rocket and could begin static fire tests just a month or two from now.
    • Tianque-12 (TQ-12) is a fairly unique engine. Powered by liquid methane and oxygen (methalox), TQ-12 uses a gas-generator propulsion cycle and is designed to produce up to 80t (175,000 lbf) of thrust. In a sense, TQ-12 is basically a slightly less powerful methalox variant of SpaceX’s Merlin 1D engine.
    • The fact that Landspace is already in a position to begin static fire tests of the engine powering its next-gen rocket bodes very well for the company’s future plans. At a minimum, it likely means that Landspace is much closer to offering multi-ton commercial launch services compared to its competitors.
  • Aside from its next-gen ambitions, Landspace has also developed a much smaller three-stage rocket known as ZQ-1. Capable of launching up to 300 kg into LEO, ZQ-1 nearly reached orbit on its October 2018 launch debut, failing midway through its third-stage burn.
  • For now, the Chinese launch startup scene is downright frenetic. The title of “first private Chinese company to reach orbit” has yet to be awarded, and more than half a dozen groups are practically racing to secure it.

Mission Updates:

  • SpaceX’s CRS-17 Cargo Dragon spacecraft successfully rendezvoused and berthed with the ISS on May 6th.
  • Potentially less than two weeks after the Falcon 9’s May 4th CRS-17 launch, SpaceX’s first dedicated Starlink mission is scheduled to occur as early as May 13th, although delays of a few days are likely.
  • SpaceX’s second West Coast launch of 2019 – carrying Canada’s Radarsat Constellation – finally has an official launch date – June 11th. The mission will reuse Falcon 9 B1051.
  • Falcon Heavy’s third launch remains tentatively scheduled no earlier than June 22nd.

Photo of the Week

Falcon 9 B1056 returned to dry ground less than 24 hours after launching CRS-17 and landing aboard drone ship Of Course I Still Love You (OCISLY). (Tom Cross)

 

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Rivian unveils self-driving chip and autonomy plans to compete with Tesla

Rivian, a mainstay in the world of electric vehicle startups, said it plans to roll out an Autonomy+ subscription and one-time purchase program, priced at $49.99 per month and $2,500 up front, respectively, for access to its self-driving suite.

Published

on

Credit: Rivian

Rivian unveiled its self-driving chip and autonomy plans to compete with Tesla and others at its AI and Autonomy Day on Thursday in Palo Alto, California.

Rivian, a mainstay in the world of electric vehicle startups, said it plans to roll out an Autonomy+ subscription and one-time purchase program, priced at $49.99 per month and $2,500 up front, respectively, for access to its self-driving suite.

CEO RJ Scaringe said it will learn and become more confident and robust as more miles are driven and it gathers more data. This is what Tesla uses through a neural network, as it uses deep learning to improve with every mile traveled.

He said:

“I couldn’t be more excited for the work our teams are driving in autonomy and AI. Our updated hardware platform, which includes our in-house 1600 sparse TOPS inference chip, will enable us to achieve dramatic progress in self-driving to ultimately deliver on our goal of delivering L4. This represents an inflection point for the ownership experience – ultimately being able to give customers their time back when in the car.”

Advertisement
-->

At first, Rivian plans to offer the service to personally-owned vehicles, and not operate as a ride-hailing service. However, ride-sharing is in the plans for the future, he said:

“While our initial focus will be on personally owned vehicles, which today represent a vast majority of the miles to the United States, this also enables us to pursue opportunities in the rideshare space.”

The Hardware

Rivian is not using a vision-only approach as Tesla does, and instead will rely on 11 cameras, five radar sensors, and a single LiDAR that will face forward.

It is also developing a chip in-house, which will be manufactured by TSMC, a supplier of Tesla’s as well. The chip will be known as RAP1 and will be about 50 times as powerful as the chip that is currently in Rivian vehicles. It will also do more than 800 trillion calculations every second.

RAP1 powers the Autonomy Compute Module 3, known as ACM3, which is Rivian’s third-generation autonomy computer.

ACM3 specs include:

  • 1600 sparse INT8 TOPS (Trillion Operations Per Second).
  • The processing power of 5 billion pixels per second.
  • RAP1 features RivLink, a low-latency interconnect technology allowing chips to be connected to multiply processing power, making it inherently extensible.
  • RAP1 is enabled by an in-house developed AI compiler and platform software

As far as LiDAR, Rivian plans to use it in forthcoming R2 cars to enable SAE Level 4 automated driving, which would allow people to sit in the back and, according to the agency’s ratings, “will not require you to take over driving.”

More Details

Rivian said it will also roll out advancements to the second-generation R1 vehicles in the near term with the addition of UHF, or Universal Hands-Free, which will be available on over 3.5 million miles of roadway in the U.S. and Canada.

Advertisement
-->

Rivian will now join the competitive ranks with Tesla, Waymo, Zoox, and others, who are all in the race for autonomy.

Advertisement
-->
Continue Reading

News

Tesla partners with Lemonade for new insurance program

Tesla recently was offered “almost free” coverage for Full Self-Driving by Lemonade’s Shai Wininger, President and Co-founder, who said it would be “happy to explore insuring Tesla FSD miles for (almost) free.”

Published

on

Credit: Tesla

Tesla owners in California, Oregon, and Arizona can now use Lemonade Insurance, the firm that recently said it could cover Full Self-Driving miles for “almost free.”

Lemonade, which offered the new service through its app, has three distinct advantages, it says:

  • Direct Connection for no telematics device needed
  • Better customer service
  • Smarter pricing

The company is known for offering unique, fee-based insurance rates through AI, and instead of keeping unclaimed premiums, it offers coverage through a flat free upfront. The leftover funds are donated to charities by its policyholders.

On Thursday, it announced that cars in three states would be able to be connected directly to the car through its smartphone app, enabling easier access to insurance factors through telematics:

Tesla recently was offered “almost free” coverage for Full Self-Driving by Lemonade’s Shai Wininger, President and Co-founder, who said it would be “happy to explore insuring Tesla FSD miles for (almost) free.”

The strategy would be one of the most unique, as it would provide Tesla drivers with stable, accurate, and consistent insurance rates, while also incentivizing owners to utilize Full Self-Driving for their travel miles.

Tesla Full Self-Driving gets an offer to be insured for ‘almost free’

Advertisement
-->

This would make FSD more cost-effective for owners and contribute to the company’s data collection efforts.

Data also backs Tesla Full Self-Driving’s advantages as a safety net for drivers. Recent figures indicate it was nine times less likely to be in an accident compared to the national average, registering an accident every 6.36 million miles. The NHTSA says a crash occurs approximately every 702,000 miles.

Tesla also offers its own in-house insurance program, which is currently offered in twelve states so far. The company is attempting to enter more areas of the U.S., with recent filings indicating the company wants to enter Florida and offer insurance to drivers in that state.

Continue Reading

News

Tesla Model Y gets hefty discounts and more in final sales push

Published

on

Credit: Tesla

Tesla Model Y configurations are getting hefty discounts and more benefits as the company is in the phase of its final sales push for the year.

Tesla is offering up to $1,500 off new Model Y Standard trims that are available in inventory in the United States. Additionally, Tesla is giving up to $2,000 off the Premium trims of the Model Y. There is also one free upgrade included, such as a paint color or interior color, at no additional charge.

Advertisement
-->

Tesla is hoping to bolster a relatively strong performance through the first three quarters of the year, with over 1.2 million cars delivered through the first three quarters.

This is about four percent under what the company reported through the same time period last year, as it was about 75,000 vehicles ahead in 2024.

However, Q3 was the company’s best quarterly performance of all time, and it surged because of the loss of the $7,500 EV tax credit, which was eliminated in September. The imminent removal of the credit led to many buyers flocking to Tesla showrooms to take advantage of the discount, which led to a strong quarter for the company.

2024 was the first year in the 2020s when Tesla did not experience a year-over-year delivery growth, as it saw a 1 percent slide from 2023. The previous years saw huge growth, with the biggest coming from 2020 to 2021, when Tesla had an 87 percent delivery growth.

This year, it is expected to be a second consecutive slide, with a drop of potentially 8 percent, if it manages to deliver 1.65 million cars, which is where Grok projects the automaker to end up.

Advertisement
-->

Tesla will likely return to its annual growth rate in the coming years, but the focus is becoming less about delivery figures and more about autonomy, a major contributor to the company’s valuation. As AI continues to become more refined, Tesla will apply these principles to its Full Self-Driving efforts, as well as the Optimus humanoid robot project.

Will Tesla thrive without the EV tax credit? Five reasons why they might

These discounts should help incentivize some buyers to pull the trigger on a vehicle before the year ends. It will also be interesting to see if the adjusted EV tax credit rules, which allowed deliveries to occur after the September 30 cutoff date, along with these discounts, will have a positive impact.

Continue Reading