Connect with us

News

India could become the fourth country ever to soft-land a spacecraft on the Moon next week

India's GSLV Mk III rocket stands vertical ahead of its planned launch of Chandrayaan-2, India's first attempted Moon landing. (ISRO)

Published

on

The Indian Space Research Organization (ISRO) is perhaps just a few weeks (maybe days) away from attempting to place the country in the history books, hopefully setting India up to become the fourth nation on Earth – after the Soviet Union, United States, and China – to successfully soft-land on the Moon.

Known as Chandrayaan-2, the mission seeks to simultaneously launch a lunar orbiter, lander, and rover, altogether weighing nearly 3900 kg (8600 lb) at liftoff. If successful, the trio of spacecraft will remain integrated for about two months as the orbiter slowly raises its Earth orbit to eventually intercept and begin orbiting the Moon. Although originally expected to launch on Sunday, July 14th (July 15th local time), a bug with the Indian-built launch vehicle’s upper stage has pushed Chandrayaan-2 outside its original launch window, which ended today (July 16th). Depending on the complexity of the mission profile ISRO is using, the delay should be no more than a few days to a few weeks before the next launch window opens.

Editor’s note: Following ISRO’s July 15th scrub, the Chandrayaan-2 Moon lander mission has been rescheduled for launch no earlier than (NET) 2:43 pm local time, July 22nd (2:13 am PDT/9:13 UTC, July 23rd).

Fourth to the Moon (in one piece)

  • All the way back in 1966, the Soviet Union (USSR) became the first to successfully soft-land an uncrewed spacecraft on the Moon with a mission known as Luna-9. Some four months after the momentous achievement, the United States became the second, safely landing Surveyor-1 on the Moon in June 1966.
    • At the height of the space race, huge amounts of money was being funneled into these milestones, permitting the companies, institutions, and space agencies building, launching, and operating the individual missions to almost throw hardware at the metaphorical wall until something stuck. With the Soviet space program, this involved 17 failures, two successes, and one partial success in the first 7 years of the Luna initiative, culminating in Luna 9’s successful landing in February 1966.
    • The US had three major separate programs known as Ranger, Lunar Orbiter, and Surveyor, the former of which was meant to simply fly past or impact the Moon to acquire detailed photos of its surface. Ranger suffered five consecutive failures and one partial failure before three full successes, while Orbiter was a complete success (5/5) and Surveyor failed only 2 of 7 attempts.
  • Ultimately, this little snippet of history is simply meant to emphasize the utterly different approaches of those pathfinder programs relative to modern exploration efforts. In the case of ISRO’s Chandrayaan-2, failure would likely mean several years of delays before the next possible attempt – there is no concurrent (verging on mass-) production of multiple spacecraft like there was with Surveyor and Luna.
  • Just shy of 50 years after the back-to-back first and second soft landings of Luna-9 and Surveyor-1, China became the third nation on Earth to successfully soft-land on the Moon with its 2013 Chang’e-3 mission, featuring a lander and rover. This was followed by Chang’e-4 in 2018, which continues to successfully operate 8 months after achieving the first successful soft-landing on the far side of the Moon.
  • Finally, just several months ago, private company SpaceIL – supported by Israeli aerospace company IAI – attempted (albeit unsuccessfully) to make Israel the fourth country to land on the Moon.

Indian spacecraft, Indian rocket

  • This finally brings us to Chandrayaan-2, what can only be described as a continuation of a recent resurgence in interest and serious robotic exploration of the Moon. Once it launches, the mission will take roughly 56 days to get into position for an attempted soft-landing. Prior to landing, the orbiter – in a circular, 100-km (62 mi) lunar orbit – will actively scout the intended landing site with a high-resolution ~0.3m/pixel camera to help the lander avoid any dangerous terrain.
  • Once complete, the lander – carrying a tiny, ~27 kg (60 lb) rover – will begin its deorbit and landing maneuvers, hopefully culminating in a successful, gentle landing near the Moon’s South pole.
    • Sadly, the Vikram lander and Pragyaan rover have an expected life of just one lunar day after landing, translating to ~14 Earth days or ~340 hours. This is a strong indicator that the Chandrayaan-2 landing component was not designed to survive the ultra-cold and harsh lunar night, also ~14 Earth days long.
    • This isn’t much of a surprise, as surviving the lunar night is a whole different challenge that is rarely worth the hardware, effort, and funding required until the first prerequisite – a soft landing on the Moon – has been successfully demonstrated.
  • A follow-up mission known as Chandrayaan-2 has already been proposed and would likely permit far lengthier exploration of the lunar south pole if India and launch partner Japan choose to move forward with it.
  • Chandrayaan-2 will be launched on an Indian-built Geosynchronous Satellite Launch Vehicle (GSLV) Mk III-D2 rocket, the most powerful rocket in India’s arsenal. Although GSLV Mk III weighs significantly more than SpaceX’s
  • Falcon 9 when fully fueled (640 metric tons to F9’s 550), the rocket is almost a third less capable to Low Earth Orbit (LEO) – 8000 kg to F9’s ~23,000 kg.
  • However, thanks to the development of an efficient liquid hydrogen/oxygen (hydrolox) upper stage and engine, the rocket comes into its own when dealing with its namesake – geostationary (i.e. high-altitude) satellite launches. To GTO, GSLV Mk III is reportedly capable of launching at least 4000 kg, almost half of Falcon 9’s expendable performance and almost 75% as much as Falcon 9 with booster landing.
  • Even more impressive is the cost: ISRO purchased a block of 10 GSLV Mk III rockets in 2018 for roughly $630M, translating to ~$63M per rocket, nearly equivalent to Falcon 9’s own list price of $62M. This places GSLV Mk III around the same level as Russia’s Proton-M rocket in terms of a cost-to-performance ratio, still second to Falcon 9 in most cases. GSLV Mk III has only launched three times (all successful) since its 2014 debut and Chandrayaan-2 will be its fourth launch.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Elon Musk confirms Tesla AI6 chip is Project Dojo’s successor

Tesla’s AI5 and AI6 chips are expected to be rolled out to the company’s consumer products.

Published

on

tesla-supercomputer-pre-dojo
Credit: Tim Zaman/Twitter

Earlier this week, reports emerged stating that Tesla has stepped back from its Project Dojo initiative. While the reports were initially framed as a negative development for the electric vehicle maker’s autonomous driving efforts, CEO Elon Musk later noted on X that Tesla was indeed halting its Dojo initiative.

Elon Musk’s Confirmation

As per Musk, Tesla was shuttering Project Dojo because it does not make sense for the company to divide its resources and scale two different AI chip designs. Dojo, after all, is designed to train the company’s autonomous driving program, and thus, it would not be rolled out to Tesla’s consumer products.

In a series of posts on X, Musk stated that it would make sense to just use Tesla’s AI5/AI6 to train its FSD and Autopilot systems. “In a supercomputer cluster, it would make sense to put many AI5/AI6 chips on a board, whether for inference or training, simply to reduce network cabling complexity & cost by a few orders of magnitude,” Musk said.

Tesla’s AI5 and AI6 chips are expected to be rolled out to the company’s consumer products, from Optimus to the Cybercab to the next-generation Roadster.

AI6 is Dojo’s Successor

What was particularly interesting about Musk’s comment was his mention of using AI5/AI6 chips for training. As per Musk, this strategy could be seen as “Dojo 3” in a way, since the performance of Tesla’s AI5 and AI6 chips is already notable. Musk’s comment about using AI6 chips for training caught the eye of many, including Apple and Rivian alumnus Phil Beisel, who noted that “AI6 is now Dojo.”

Advertisement

“Dojo is Tesla’s AI training supercomputer, built around a custom chip known as the D1. The D1 and AI5/AI6 share many core design elements, particularly the math operations used in neural networks (e.g., matrix multiplication) and highly parallel processing.

“Dojo had a unique feature: chips arranged in a 5×5 grid using a system-on-wafer design, with etched interconnects enabling high-speed data transfer. In a sense, Dojo will live on as the generalized AI6. Going forward, all efforts will focus on AI6,” the tech veteran wrote in a post on X.

Elon Musk confirmed the Apple alumnus’ musings, with the CEO responding with a “bullseye” emoji. Musk is evidently excited for Tesla’s AI6 chip, which is expected to produced by Samsung’s upcoming Texas fabrication facility. In a post on X, Musk stated that he would personally be walking Samsung’s line to accelerate the output of Tesla’s AI6 computers.

Continue Reading

Cybertruck

Tesla’s new upgrade makes the Cybertruck extra-terrestrial

The upgrade was announced by the electric vehicle maker on social media platform X.

Published

on

Credit: Tesla

It took a while, but the Tesla Cybertruck’s rock sliders and battery armor upgrades have finally arrived. The upgrade was announced by the electric vehicle maker on social media platform X, to much appreciation from Cybertruck owners.

Tesla Releases Cybertruck Armor Package

As could be seen in Tesla’s official Shop, the Cybertruck Terrestrial Armor Package is available only for Foundation Series units for now, though non-Foundation Series vehicles should have access to the upgrade around September 2025. Price-wise, the armor package is quite reasonable at $3,500.

For that price, Cybertruck owners would be able to acquire enhanced rock sliders and an underbody battery shield that should allow the all-electric pickup truck to go through harsh terrain without any issues. Each purchase of the Terrestrial Armor Package includes 1 Underbody shield, 1 Left side structural rocker, and 1 Right side structural rocker.

Most importantly, the Armor Package’s price includes shipment to the customer’s preferred Tesla Service Center and installation.

Extra-Terrestrial

Tesla describes its Cybertruck Armor Package as follows: “Get extra-terrestrial. The Cybertruck Terrestrial Armor Package includes enhanced rock sliders and an underbody battery shield to provide greater protection from rocks and debris when off-roading on tough terrain. The rock sliders are constructed from coated steel and the underbody battery shield is constructed from aluminum for greater protection against scraping.”

Advertisement

Initial impressions from a Cybertruck owner who was fortunate enough to test the Armor Package in real-world off-road conditions have been positive. The item’s pricing also seems to be quite appreciated by Cybertruck owners in forums such as the Cybertruck Owners Club, with some members stating that they would be acquiring the package for their own all-electric pickup trucks.

Continue Reading

News

Tesla Model Y L reportedly entered mass production in Giga Shanghai

The vehicle is expected to be a larger version of the best-selling Model Y crossover.

Published

on

Credit: Tesla Asia/X

Reports from industry watchers in China have suggested that the Tesla Model Y L has started mass production at Gigafactory Shanghai. The vehicle is expected to be a larger version of the best-selling Model Y crossover, offering three rows and six seats thanks to a longer wheelbase.

Tesla Model Y L Production Rumors

Reports about the new Model Y variant’s alleged milestone were initially shared on Weibo, with some industry watchers stating that the vehicle has already started mass production. Tesla China is reportedly surveying which of its domestic stores would have the first display units of the six-seat Model Y. 

The Model Y L’s steady march towards production was evident this past week, with recent reports indicating that the vehicle’s key specs have already been listed in the China Ministry of Industry and Information Technology’s (MIIT) latest batch of new energy vehicle models that are eligible for vehicle purchase tax exemptions.

As per the MIIT’s list, the Model Y L will be a dual motor vehicle that is equipped with an 82.0-kWh lithium-ion battery from LG Energy Solution. The vehicle will feature six seats with two captain seats on the second row, as well as a CLTC range of 751 km. 

Tesla Model Y L Potential

The potential of the Model Y L is vast, considering that it is produced in the existing Model Y lines of Tesla’s factories. This should slash new vehicle tooling costs and potential ramp-up issues. Three-row SUVs also command a pretty notable market that has mostly only been accessed by the more expensive Model X. With the Model Y L’s lower price, Tesla could become more competitive in the three-row SUV segment.

Advertisement

As noted by longtime Tesla owner and investor @_SFTahoe, the Model Y L could also become a more premium option for the company’s Robotaxi business, thanks to its second row captain seats and spacious interior. The expansion of Model Y L Robotaxis should also be impressive considering Tesla’s mastery of mass manufacturing techniques. 

Continue Reading

Trending