Connect with us

News

Electric aircraft could transform short-distance regional air travel

Published

on

Whenever the subject of electric aircraft comes up I see the room filled with skeptical looks. The looks are not unwarranted. Even electric cars remain in the low single digits for worldwide market share and electric flight is undoubtedly a greater hurdle. The enemy of flight is weight after all and batteries are rather heavy. The skepticism though, while justified, is misplaced.

The problem is that we tend to think of air transport as large intercontinental craft flying thousands of miles at a time. Those certainly exist and there’s even one that travels 9000 miles, flying 17 hours from Perth to London. The reality for most air travel, however, is somewhat different. Statistics from the US Bureau of Transportation show that the overwhelming majority of US passengers are on domestic flights and what’s more, nearly half of those are under 700 miles.

 

Source: Bureau of Transportation Statistics, T-100 Market (All Carriers), Passengers, All Scheduled Domestic and International within/to/from USA 2017

 

Source: Bureau of Transportation Statistics – T100 domestic, all carriers

The data graphed above shows that 20% of domestic passengers are flying under 350 miles in the USA, with nearly 50% under 700 miles. Forget about the 9,000 mile international flights, this is the market for electrified flight in the near-term. The aircraft to support it are nearly here.

I’ve written in the past about the various electric aircraft in development from companies like Zunum Aero, Wright Electric, Airbus/Siemens, NASA, Eviation, BYE, and others. It’s still very early but advancement is steady and the age of electric flight is coming. For a moment consider Zunum Aero’s aircraft, the ZA10. It’s a 12-seat hybrid for regional transport, slated to begin test flights next year and deliveries in the early 2020s. The aircraft is targeting a range of 700 miles and will have a shorter range all-electric version. There’s also a larger variant planned.

Zunum Aero’s ZA10 

  • 60 to 80% reduction in operating costs
  • 80% lower emissions and noise
  • 40% reduction in runway needs
  • Hybrid-electric range of 700 miles

Back to those skeptical looks. The financial driver for electrification is huge, with the potential to reduce operating costs 60 to 80%. More so with carbon pricing. If said hybrid aircraft also create less pollution, require shorter runways, reduce maintenance, and produce less noise, well then which carriers wouldn’t want to use them? Particularly in a regional market which, as noted previously, includes nearly 50% of all domestic flights in the US.

That all seems great, but even this understates the impact of electrification. What’s missing from the analysis is the potential for electric aircraft to fundamentally transform air travel as we know it, to vastly increase the number of flights under 700 miles.

 

The data we have today shows us the past, but this is the future:

Electric and hybrid aircraft have the potential to open up new regions to air travel, revitalize small neglected airports, create jobs in small communities, and make travel more enjoyable for everyone. This vision will become a necessity if we hope to have a cohesive society and growing economy,

“In the globalized economy, communities without good air service struggle to attract investment and create jobs” – Zunum Aero

There’s a wonderful write-up on IEEE Spectrum which highlights how electrification can be the catalyst that rejuvenates regional travel. The article’s authors are from Zunum Aero, including the founder and the chief technology officer.

The article includes some interesting statistics on the current state of air travel. For example, the authors note that only 1% of the airports in the USA are responsible for 96% of the air traffic and that since 1980 the average aircraft seat capacity has increased by a factor of 4. What if electric aircraft can increase travel to just some of those other airports?

Advertisement

The current state of air travel is largely the result of financial choices made over many decades. Larger aircraft are more economical to purchase and operate, while fewer routes keep aircraft load factors high and simplifies logistics.

“Regional Travel is Ripe for Reinvention” – JetBlue Technology Ventures

The problem with this is that large airplanes require large infrastructure to support them (think space, buildings, runways) and the noise they generate is not well liked by residents. There aren’t many airports able to accommodate these needs so people are funneled to major airports located outside of major cities, sometimes inconveniently out of the way of the passengers’ ultimate destinations. This means more time is spent traveling to the airport, at the airport, and flying on the airplane, for an experience that is all to often chaotic and impersonal. In fact, door to door travel times have actually gotten worse for regional air travel, not better. Add in a snowstorm or a single large aircraft is delay and it can become a logistical nightmare.

The benefits of electric aircraft are particularly well suited to regional air travel needs. The question is, will it be enough to usher in a renaissance for regional flight, where smaller aircraft travel more routes and to smaller airports? I certainly think so. Toronto has a great example of how this might occur. The Toronto Island airport can only operate small aircraft due to noise restrictions, but it’s use has grown steadily. It’s accessibility from downtown and the spectacular speed of service are key drivers. With electric aircraft I believe this type of scenario will become the norm.

Now, what if you could do it from your own front door?

 

Hyper-local air travel with electric vertical takeoff and landing aircraft (E-VTOL)

Imagine this. You wake up in the morning, dress, open your phone and request an electric vertical takeoff and landing aircraft (VTOL) to take you to a city a few hours drive away. An electric autonomous car picks up you and drives you to a local VTOL access point, on top of a parkade near your home. Several small two and four seat aircraft are waiting there. Maybe someone is there to greet you but it’s only customary. Your phone recognizes your access and opens up the passenger compartment to your aircraft. You get in, there is no pilot, no cockpit – the vehicle is autonomous. Quickly the electric motors spin up, the craft rises into the air and carries you directly into the centre of a nearby city. Or maybe you go to a remote campsite or to an airport outside of the city where you can access an intercontinental flight. All of this for a cost less than traditional means of transport.

Long have we been promised a future of flying cars, but this time electric propulsion and increased autonomy can actually make it happen. Check out the video below of the first full scale test flight of the Lilium Jet in 2017. Such ideas were once confined to science fiction, but no more. Yes, this technology is in the early stages and it remains to be seen how far batteries can take us. Yet those batteries get better each year. For Lilium’s part they have manned test flights coming next year and they are targeting a range of 300km and speed of 300km/hr. That could open up a whole new type of air travel.

Electric VTOL – Lilium

Lilium started in 2013 with the vision of developing an all-electric “air-taxi” vehicle.  

Advertisement

There are now dozens of companies working on electric VTOL aircraft, with over 100 projects underway. Norway’s aircraft operator Avinor even issued a report earlier this year that sees a path to small VTOL aircraft with 1 or 2 passengers in the early to mid 2020’s, with larger 4 or 5 person craft reaching market by the end of the 2020’s.

The fascinating world of VTOLs aside, fixed-wing hybrid and electric regional jets provide an obvious path for electrification. This will reduce operating costs, open up new opportunities for passengers, and reduced the environmental impact of flying. It’s where corporations and countries are already going. Norway for example has a target of 2030 for all regional flights to be fully electric, not hybrid, fully electric. While operators and manufacturers are pushing to see who can take the lead. One thing is certain, with the coming advancements in electric flight regional transport will never be the same.

 

As an engineer working to improve sustainability and energy use, I have a passion for renewables, research, and data analytics. I'm based out of Toronto Ontario and you can contact me on LinkedIn or Twitter.

Advertisement
Comments

Elon Musk

Elon Musk shares insights on SpaceX and Tesla’s potential scale

In a pair of recent posts on X, Musk argued that both companies operate in domains where growth is not linear, but exponential.

Published

on

Credit: xAI

Elon Musk outlined why he believes Tesla and SpaceX ultimately dwarf their competitors, pointing to autonomy, robotics, and space-based energy as forces that fundamentally reshape economic scale. 

In a pair of recent posts on X, Musk argued that both companies operate in domains where growth is not linear, but exponential.

Space-based energy

In a response to a user on X who observed that SpaceX has a larger valuation than all six US defense companies combined, Musk explained that space-based industries will eventually surpass the total economic value of Earth. He noted that space allows humanity to harness roughly 100,000 times more energy than Earth currently uses, while still consuming less than a millionth of the Sun’s total energy output.

That level of available energy should enable the emergence and development of industries that are simply not possible within Earth’s physical and environmental constraints. Continuous solar exposure in space, as per Musk’s comment, removes limitations imposed by atmosphere, weather, and land availability.

Autonomy and robots

In a follow-up post, Elon Musk explaned that “due to autonomy, Tesla is worth more than the rest of the auto industry.” Musk added that this assessment does not yet account for Optimus, Tesla’s humanoid robot. As per the CEO, once Optimus reaches scaled production, it could increase Earth’s gross domestic product by an order of magnitude, ultimately paving the way for sustainable abundance.

Even before the advent of Optimus, however, Tesla’s autonomous driving system already gives vehicles the option to become revenue-generating assets through services like the Tesla Robotaxi network. Tesla’s autonomous efforts seem to be on the verge of paying off, as services like the Robotaxi network have already been launched in its initial stages in Austin and the Bay Area. 

Continue Reading

News

Tesla Cybercab undergoes winter testing as Elon Musk reiterates production start date

CEO Elon Musk confirmed the timeline in a recent post on X, while Tesla’s official social media accounts separately revealed that Cybercab prototypes are now undergoing winter testing in Alaska.

Published

on

Credit: Tesla Robotaxi/X

Tesla has reiterated that production of its fully autonomous Cybercab is set to begin in April, even as the company continues expanding real-world testing of the vehicle. 

CEO Elon Musk confirmed the timeline in a recent post on X, while Tesla’s official social media accounts separately revealed that Cybercab prototypes are now undergoing winter testing in Alaska.

Musk confirms April Cybercab initial production

In a post on X, Musk reiterated that Cybercab production is scheduled to begin in April, reiterating his guidance about the vehicle’s manufacturing timeline. Around the same time, Tesla shared images showing the Cybercab undergoing cold-weather testing in Alaska. Interestingly enough, the Cybercab prototypes being tested in Alaska seemed to be equipped with snow tires. 

Winter testing in Alaska suggests Tesla is preparing the Cybercab for deployment across a wide range of climates in the United States. Cold temperatures, snow, ice, and reduced traction present some of the most demanding scenarios for autonomous systems, making Alaska a logical proving ground for a vehicle designed to operate without a human driver.

Taken together, Musk’s production update and Tesla’s testing post indicate that while the Cybercab is nearing the start of manufacturing, validation efforts are still actively ramping to ensure reliability in real-world environments.

What early Cybercab production might look like

Musk has previously cautioned that the start of Cybercab manufacturing will be slow, reflecting the challenges of launching an all-new vehicle platform. In a recent comment, Musk said initial production typically follows an S-curve, with early output constrained by how many new parts and processes are involved.

According to Musk, both Cybercab and Optimus fall into this category, as “almost everything is new.” As a result, early production rates are expected to be very deliberate before eventually accelerating rapidly as manufacturing processes mature.

“Initial production is always very slow and follows an S-curve. The speed of production ramp is inversely proportionate to how many new parts and steps there are. For Cybercab and Optimus, almost everything is new, so the early production rate will be agonizingly slow, but eventually end up being insanely fast,” Musk wrote in a post on X.

Advertisement
Continue Reading

Elon Musk

Tesla to increase Full Self-Driving subscription price: here’s when

Published

on

Credit: Tesla

Tesla will increase its Full Self-Driving subscription price, meaning it will eventually be more than the current $99 per month price tag it has right now.

Already stating that the ability to purchase the suite outright will be removed, Tesla CEO Elon Musk said earlier this week that the Full Self-Driving subscription price would increase when its capabilities improve:

“I should also mention that the $99/month for supervised FSD will rise as FSD’s capabilities improve. The massive value jump is when you can be on your phone or sleeping for the entire ride (unsupervised FSD).”

This was an expected change, especially as Tesla has been hinting for some time that it is approaching a feature-complete version of Full Self-Driving that will no longer require driver supervision. However, with the increase, some are concerned that they may be priced out.

$99 per month is already a tough ask for some. While Full Self-Driving is definitely worth it just due to the capabilities, not every driver is ready to add potentially 50 percent to their car payment each month to have it.

While Tesla has not revealed any target price for FSD, it does seem that it will go up to at least $150.

Additionally, the ability to purchase the suite outright is also being eliminated on February 14, which gives owners another reason to be slightly concerned about whether they will be able to afford to continue paying for Full Self-Driving in any capacity.

Some owners have requested a tiered program, which would allow people to pay for the capabilities they want at a discounted price.

Unsupervised FSD would be the most expensive, and although the company started removing Autopilot from some vehicles, it seems a Supervised FSD suite would still attract people to pay between $49 and $99 per month, as it is very useful.

Tesla will likely release pricing for the Unsupervised suite when it is available, but price increases could still come to the Supervised version as things improve.

This is not the first time Musk has hinted that the price would change with capability improvements, either. He’s been saying it for some time. In 2020, he even said the value of FSD would “probably be somewhere in excess of $100,000.”

Continue Reading