News
Elon Musk’s Neuralink targets human trials for brain-machine interface in 2020
After operating in stealth mode for the past two years, Neuralink, the brain-machine interface startup co-founded by SpaceX and Tesla CEO Elon Musk, has revealed some of the innovations that it has been developing. The company also announced that it is aiming to start implanting devices in humans by 2020, starting with paralyzed individuals who could then control phones or computers through their brain-machine implants.
Neuralink focused on two innovations on Tuesday’s presentation. The first involved flexible “threads” that are incredibly thin, measuring between 4 and 6 μm or about 1/3 the diameter of human hair. These threads are capable of transferring high volumes of data, with a white paper published by the company hinting at “as many as 3,072 electrodes per array distributed across 96 threads.” With the threads being incredibly thin, they would not damage the brain.
Another key technology revealed by Neuralink on its recent presentation was a custom made robot designed to embed implants into the brain. Thanks to computer vision and lenses, the robot will be able to place implants on patients without hitting or damaging blood vessels, reducing damage to the brain and scar tissue. Neuralink researcher Philip Sabes noted that “because these things are so thin and flexible, the idea is that they move with the tissue instead of tearing the tissue.”

Neuralink has performed at least 19 surgeries on animals with its robots, and so far, the machines have successfully placed the threads about 87% of the time. One of these subjects, a rather hefty rat that was shown off to the press, was fitted with a wired prototype of the company’s brain-machine interface. During the press demo, Sabes mentioned that the amount of data gathered from the rodent was about ten times greater than what is possible with today’s sensors.
In his presentation, Elon Musk stated that the evolution of Neuralink’s tech would be gradual, though he did mention that the company’s goal is a form of “symbiosis” with technology. “It’s not going to be suddenly Neuralink will have this neural lace and start taking over people’s brains. This is going to sound pretty weird, but ultimately, we will achieve symbiosis with artificial intelligence. This is not a mandatory thing. It is a thing you can choose to have if you want. This is something that I think will be really important on a civilization-level scale,” he remarked.
While the technologies shared by Neuralink on Tuesday seemed borderline science fiction, Neuralink president Max Hodak noted that similar innovations have actually been introduced and implemented in the past. “Neuralink didn’t come out of nowhere; there’s a long history of academic research here. We’re, in the greatest sense, building on the shoulders of giants,” he said. Nevertheless, Neuralink’s goal of directly reading neural spikes in a minimally-intrusive way remains notably ambitious.

The potential for such technologies is enormous. Implants such as BrainGate, which was developed initially at Brown University, were used in cases such as those of Matthew Nagle, who suffered from a spinal cord injury. Back in 2006, Nagle was able to learn how to use a computer using brain implants, at one point even playing Pong with his mind. In its presentation, Neuralink noted that its brain implants could be used for several individuals afflicted by Parkinson’s Disease, Dystonia, Epilepsy, OCD, Depression, Chronic Pain, and Tinnitus, among many.
Yet, despite its impressive innovations and its lofty goals, it should be noted that Neuralink is still a long way from achieving its targets. Dr. Matthew MacDougall, head surgeon at Neuralink, mentioned this while discussing how Neuralink implants could be as seamless as Lasik in the future. “There is a whole FDA process we have to go though. We haven’t done that yet,” he said.
So why the presentation? As noted by Elon Musk, Tuesday’s event is, at its core, an invitation for interested individuals who would like to work on the innovations that Neuralink is pursuing. With this open invitation, it would not be surprising if the company attracts an impressive number of talent in the near future. But now it’s time for you to vote. Will you be open to getting a brain-machine interface implant from Neuralink in the future?
News
Tesla Giga Berlin plant manager faces defamation probe after IG Metall union complaint
Prosecutors in Frankfurt (Oder) confirmed they have opened a defamation probe into Gigafactory Berlin plant manager André Thierig.
Tesla’s Giga Berlin plant manager is now under investigation after a complaint from trade union IG Metall, escalating tensions ahead of next month’s works council elections.
Prosecutors in Frankfurt (Oder) confirmed they have opened a defamation probe into Gigafactory Berlin plant manager André Thierig, as per a report from rbb24.
A spokesperson for the Frankfurt (Oder) public prosecutor’s office confirmed to the German Press Agency that an investigation for defamation has been initiated following a criminal complaint filed by IG Metall against Thierig.
The dispute stems from Tesla’s allegation that an IG Metall representative secretly recorded a works council meeting using a laptop. In a post on X, Thierig described the incident as “truly beyond words,” stating that police were called and a criminal complaint was filed.
“What has happened today at Giga Berlin is truly beyond words! An external union representative from IG Metall attended a works council meeting. For unknown reasons, he recorded the internal meeting and was caught in action! We obviously called police and filed a criminal complaint!” Thierig wrote in a post on X.
Police later confirmed that officers did seize a computer belonging to an IG Metall member at Giga Berlin. Prosecutors are separately investigating the union representative on suspicion of breach of confidentiality and violation of Germany’s Works Constitution Act.
IG Metall has denied Tesla’s allegations. The union claimed that its member offered to unlock the laptop for review in order to accelerate the investigation and counter what it called false accusations. The union has also sought a labor court injunction to “prohibit Thierig from further disseminating false claims.”
The clash comes as Tesla employees prepare to vote in works council elections scheduled for March 2–4, 2026. Approximately 11,000 Giga Berlin workers are eligible to participate in the elections.
News
Tesla wins FCC approval for wireless Cybercab charging system
The decision grants Tesla a waiver that allows the Cybercab’s wireless charging system to be installed on fixed outdoor equipment.
Tesla has received approval from the Federal Communications Commission (FCC) to use Ultra-Wideband (UWB) radio technology in its wireless EV charging system.
The decision grants Tesla a waiver that allows the Cybercab’s wireless charging system to be installed on fixed outdoor equipment. This effectively clears a regulatory hurdle for the company’s planned wireless charging pad for the autonomous two-seater.
Tesla’s wireless charging system is described as follows in the document: “The Tesla positioning system is an impulse UWB radio system that enables peer-to-peer communications between a UWB transceiver installed on an electric vehicle (EV) and a second UWB transceiver installed on a ground-level pad, which could be located outdoors, to achieve optimal positioning for the EV to charge wirelessly.”
The company explained that Bluetooth is first used to locate the charging pad. “Prior to the UWB operation, the vehicular system uses Bluetooth technology for the vehicle to discover the location of the ground pad and engage in data exchange activities (which is not subject to the waiver).”
Once the vehicle approaches the pad, the UWB system briefly activates. “When the vehicle approaches the ground pad, the UWB transceivers will operate to track the position of the vehicle to determine when the optimal position has been achieved over the pad before enabling wireless power charging.”
Tesla also emphasized that “the UWB signals occur only briefly when the vehicle approaches the ground pad; and mostly at ground level between the vehicle and the pad,” and that the signals are “significantly attenuated by the body of the vehicle positioned over the pad.”
As noted by Tesla watcher Sawyer Merritt, the FCC ultimately granted Tesla’s proposal since the Cybercab’s wireless charging system’s signal is very low power, it only turns on briefly while parking, it works only at very short range, and it won’t interfere with other systems.
While the approval clears the way for Tesla’s wireless charging plans, the Cybercab does not appear to depend solely on the new system.
Cybercab prototypes have frequently been spotted charging at standard Tesla Superchargers across the United States. This suggests the vehicle can easily operate within Tesla’s existing charging network even as the wireless system is developed and deployed. With this in mind, it would not be surprising if the first batches of the Cybercab that are deployed and delivered to consumers end up being charged by regular Superchargers.
Elon Musk
Tesla posts updated FSD safety stats as owners surpass 8 billion miles
Tesla shared the milestone as adoption of the system accelerates across several markets.
Tesla has posted updated safety stats for Full Self-Driving Supervised. The results were shared by the electric vehicle maker as FSD Supervised users passed more than 8 billion cumulative miles.
Tesla shared the milestone in a post on its official X account.
“Tesla owners have now driven >8 billion miles on FSD Supervised,” the company wrote in its post on X. Tesla also included a graphic showing FSD Supervised’s miles driven before a collision, which far exceeds that of the United States average.
The growth curve of FSD Supervised’s cumulative miles over the past five years has been notable. As noted in data shared by Tesla watcher Sawyer Merritt, annual FSD (Supervised) miles have increased from roughly 6 million in 2021 to 80 million in 2022, 670 million in 2023, 2.25 billion in 2024, and 4.25 billion in 2025. In just the first 50 days of 2026, Tesla owners logged another 1 billion miles.
At the current pace, the fleet is trending towards hitting about 10 billion FSD Supervised miles this year. The increase has been driven by Tesla’s growing vehicle fleet, periodic free trials, and expanding Robotaxi operations, among others.
Tesla also recently updated the safety data for FSD Supervised on its website, covering North America across all road types over the latest 12-month period.
As per Tesla’s figures, vehicles operating with FSD Supervised engaged recorded one major collision every 5,300,676 miles. In comparison, Teslas driven manually with Active Safety systems recorded one major collision every 2,175,763 miles, while Teslas driven manually without Active Safety recorded one major collision every 855,132 miles. The U.S. average during the same period was one major collision every 660,164 miles.
During the measured period, Tesla reported 830 total major collisions with FSD (Supervised) engaged, compared to 16,131 collisions for Teslas driven manually with Active Safety and 250 collisions for Teslas driven manually without Active Safety. Total miles logged exceeded 4.39 billion miles for FSD (Supervised) during the same timeframe.