Connect with us

News

Elon Musk’s Neuralink targets human trials for brain-machine interface in 2020

(Photo: Neuralink)

Published

on

After operating in stealth mode for the past two years, Neuralink, the brain-machine interface startup co-founded by SpaceX and Tesla CEO Elon Musk, has revealed some of the innovations that it has been developing. The company also announced that it is aiming to start implanting devices in humans by 2020, starting with paralyzed individuals who could then control phones or computers through their brain-machine implants. 

Neuralink focused on two innovations on Tuesday’s presentation. The first involved flexible “threads” that are incredibly thin, measuring between 4 and 6 μm or about 1/3 the diameter of human hair. These threads are capable of transferring high volumes of data, with a white paper published by the company hinting at “as many as 3,072 electrodes per array distributed across 96 threads.” With the threads being incredibly thin, they would not damage the brain. 

Another key technology revealed by Neuralink on its recent presentation was a custom made robot designed to embed implants into the brain. Thanks to computer vision and lenses, the robot will be able to place implants on patients without hitting or damaging blood vessels, reducing damage to the brain and scar tissue. Neuralink researcher Philip Sabes noted that “because these things are so thin and flexible, the idea is that they move with the tissue instead of tearing the tissue.”  

Neuralink’s robot used for inserting electrodes into the brain. (Photo: Neuralink)

Neuralink has performed at least 19 surgeries on animals with its robots, and so far, the machines have successfully placed the threads about 87% of the time. One of these subjects, a rather hefty rat that was shown off to the press, was fitted with a wired prototype of the company’s brain-machine interface. During the press demo, Sabes mentioned that the amount of data gathered from the rodent was about ten times greater than what is possible with today’s sensors. 

In his presentation, Elon Musk stated that the evolution of Neuralink’s tech would be gradual, though he did mention that the company’s goal is a form of “symbiosis” with technology. “It’s not going to be suddenly Neuralink will have this neural lace and start taking over people’s brains. This is going to sound pretty weird, but ultimately, we will achieve symbiosis with artificial intelligence. This is not a mandatory thing. It is a thing you can choose to have if you want. This is something that I think will be really important on a civilization-level scale,” he remarked. 

While the technologies shared by Neuralink on Tuesday seemed borderline science fiction, Neuralink president Max Hodak noted that similar innovations have actually been introduced and implemented in the past. “Neuralink didn’t come out of nowhere; there’s a long history of academic research here. We’re, in the greatest sense, building on the shoulders of giants,” he said. Nevertheless, Neuralink’s goal of directly reading neural spikes in a minimally-intrusive way remains notably ambitious.

A concept of a wireless receiver for Neuralink’s brain-machine interface. (Photo: Neuralink)

The potential for such technologies is enormous. Implants such as BrainGate, which was developed initially at Brown University, were used in cases such as those of Matthew Nagle, who suffered from a spinal cord injury. Back in 2006, Nagle was able to learn how to use a computer using brain implants, at one point even playing Pong with his mind. In its presentation, Neuralink noted that its brain implants could be used for several individuals afflicted by Parkinson’s Disease, Dystonia, Epilepsy, OCD, Depression, Chronic Pain, and Tinnitus, among many. 

Yet, despite its impressive innovations and its lofty goals, it should be noted that Neuralink is still a long way from achieving its targets. Dr. Matthew MacDougall, head surgeon at Neuralink, mentioned this while discussing how Neuralink implants could be as seamless as Lasik in the future. “There is a whole FDA process we have to go though. We haven’t done that yet,” he said. 

So why the presentation? As noted by Elon Musk, Tuesday’s event is, at its core, an invitation for interested individuals who would like to work on the innovations that Neuralink is pursuing. With this open invitation, it would not be surprising if the company attracts an impressive number of talent in the near future. But now it’s time for you to vote. Will you be open to getting a brain-machine interface implant from Neuralink in the future?

Simon is an experienced automotive reporter with a passion for electric cars and clean energy. Fascinated by the world envisioned by Elon Musk, he hopes to make it to Mars (at least as a tourist) someday. For stories or tips--or even to just say a simple hello--send a message to his email, simon@teslarati.com or his handle on X, @ResidentSponge.

Advertisement
Comments

Elon Musk

Elon Musk’s Boring Company opens Vegas Loop’s newest station

The Fontainebleau is the latest resort on the Las Vegas Strip to embrace the tunneling startup’s underground transportation system.

Published

on

Credit: The Boring Company/X

Elon Musk’s tunneling startup, The Boring Company, has welcomed its newest Vegas Loop station at the Fontainebleau Las Vegas.

The Fontainebleau is the latest resort on the Las Vegas Strip to embrace the tunneling startup’s underground transportation system.

Fontainebleau Loop station

The new Vegas Loop station is located on level V-1 of the Fontainebleau’s south valet area, as noted in a report from the Las Vegas Review-Journal. According to the resort, guests will be able to travel free of charge to the stations serving the Las Vegas Convention Center, as well as to Loop stations in Encore and Westgate.

The Fontainebleau station connects to the Riviera Station, which is located in the northwest parking lot of the convention center’s West Hall. From there, passengers will be able to access the greater Vegas Loop.

Vegas Loop expansion

In December, The Boring Company began offering Vegas Loop rides to and from Harry Reid International Airport. Those trips include a limited above-ground segment, following approval from the Nevada Transportation Authority to allow surface street travel tied to Loop operations.

Under the approval, airport rides are limited to no more than four miles of surface street travel, and each trip must include a tunnel segment. The Vegas Loop currently includes more than 10 miles of tunnels. From this number, about four miles of tunnels are operational.

The Boring Company President Steve Davis previously told the Review-Journal that the University Center Loop segment, which is currently under construction, is expected to open in the first quarter of 2026. That extension would allow Loop vehicles to travel beneath Paradise Road between the convention center and the airport, with a planned station located just north of Tropicana Avenue.

Continue Reading

News

Tesla leases new 108k-sq ft R&D facility near Fremont Factory

The lease adds to Tesla’s presence near its primary California manufacturing hub as the company continues investing in autonomy and artificial intelligence.

Published

on

Credit: Tesla

Tesla has expanded its footprint near its Fremont Factory by leasing a 108,000-square-foot R&D facility in the East Bay. 

The lease adds to Tesla’s presence near its primary California manufacturing hub as the company continues investing in autonomy and artificial intelligence.

A new Fremont lease

Tesla will occupy the entire building at 45401 Research Ave. in Fremont, as per real estate services firm Colliers. The transaction stands as the second-largest R&D lease of the fourth quarter, trailing only a roughly 115,000-square-foot transaction by Figure AI in San Jose.

As noted in a Silicon Valley Business Journal report, Tesla’s new Fremont lease was completed with landlord Lincoln Property Co., which owns the facility. Colliers stated that Tesla’s Fremont expansion reflects continued demand from established technology companies that are seeking space for engineering, testing, and specialized manufacturing.

Tesla has not disclosed which of its business units will be occupying the building, though Colliers has described the property as suitable for office and R&D functions. Tesla has not issued a comment about its new Fremont lease as of writing.

AI investments

Silicon Valley remains a key region for automakers as vehicles increasingly rely on software, artificial intelligence, and advanced electronics. Erin Keating, senior director of economics and industry insights at Cox Automotive, has stated that Tesla is among the most aggressive auto companies when it comes to software-driven vehicle development.

Other automakers have also expanded their presence in the area. Rivian operates an autonomy and core technology hub in Palo Alto, while GM maintains an AI center of excellence in Mountain View. Toyota is also relocating its software and autonomy unit to a newly upgraded property in Santa Clara.

Despite these expansions, Colliers has noted that Silicon Valley posted nearly 444,000 square feet of net occupancy losses in Q4 2025, pushing overall vacancy to 11.2%.

Advertisement
Continue Reading

News

Tesla winter weather test: How long does it take to melt 8 inches of snow?

Published

on

Credit: Teslarati

In Pennsylvania, we got between 10 and 12 inches of snow over the weekend as a nasty Winter storm ripped through a large portion of the country, bringing snow to some areas and nasty ice storms to others.

I have had a Model Y Performance for the week courtesy of Tesla, which got the car to me last Monday. Today was my last full day with it before I take it back to my local showroom, and with all the accumulation on it, I decided to run a cool little experiment: How long would it take for Tesla’s Defrost feature to melt 8 inches of snow?

Tesla Model Y Performance set for new market entrance in Q1

Tesla’s Defrost feature is one of the best and most underrated that the car has in its arsenal. While every car out there has a defrost setting, Tesla’s can be activated through the Smartphone App and is one of the better-performing systems in my opinion.

It has come in handy a lot through the Fall and Winter, helping clear up my windshield more efficiently while also clearing up more of the front glass than other cars I’ve owned.

The test was simple: don’t touch any of the ice or snow with my ice scraper, and let the car do all the work, no matter how long it took. Of course, it would be quicker to just clear the ice off manually, but I really wanted to see how long it would take.

Tesla Model Y heat pump takes on Model S resistive heating in defrosting showdown

Observations

I started this test at around 10:30 a.m. It was still pretty cloudy and cold out, and I knew the latter portion of the test would get some help from the Sun as it was expected to come out around noon, maybe a little bit after.

I cranked it up and set my iPhone up on a tripod, and activated the Time Lapse feature in the Camera settings.

The rest of the test was sitting and waiting.

It didn’t take long to see some difference. In fact, by the 20-minute mark, there was some notable melting of snow and ice along the sides of the windshield near the A Pillar.

However, this test was not one that was “efficient” in any manner; it took about three hours and 40 minutes to get the snow to a point where I would feel comfortable driving out in public. In no way would I do this normally; I simply wanted to see how it would do with a massive accumulation of snow.

It did well, but in the future, I’ll stick to clearing it off manually and using the Defrost setting for clearing up some ice before the gym in the morning.

Check out the video of the test below:

Continue Reading