News
Elon Musk reveals SpaceX Falcon 9 survived a water landing test
Following the picture-perfect launch of GovSat-1 on Wednesday afternoon, SpaceX CEO Elon Musk took to Twitter with an extremely unusual bit of news. After separating from the second stage, events relating to Falcon 9’s first stage recovery operations were heard live in the background of SpaceX’s live coverage, leading to some additional intrigue around an already odd situation.
B1032, a flight-proven (reused) booster tasked with launching GovSat-1 on its second mission, was seen with landing legs and grid fins on its sooty exterior – a confusing appearance due to SpaceX’s statement that the core would be expended into the ocean after launch. Thankfully, Elon Musk’s tweets provide at least the beginning of an answer for the several oddities.
This rocket was meant to test very high retrothrust landing in water so it didn’t hurt the droneship, but amazingly it has survived. We will try to tow it back to shore. pic.twitter.com/hipmgdnq16
— Elon Musk (@elonmusk) January 31, 2018
As stated above, GovSat-1’s Falcon 9 booster (1032) was apparently being used to test an exceptionally aggressive landing burn in lieu of a drone ship beneath it. The lack of drone ship begins to make more sense with the added knowledge that 1032 was testing experimental landing procedures: in the relatively likely eventuality that something went wrong, the massive booster would have likely impacted Of Course I Still Love You at an extremely high velocity. Similar impacts have occurred before as SpaceX gradually perfected the new technologies and operational knowledge necessary to recover orbital-class rockets, but a basic understanding of rocketry implies that 1032’s OCISLY impact would have been uniquely destructive, likely taking the ship out of action for at least several weeks of repairs.
This would pose an inherent problem for the imminent launch of Falcon Heavy, with the center of three first stages currently scheduled to attempt a landing aboard the very same drone ship in less than a week. Under optimum conditions (sans huge explosions and general destruction), OCISLY and its entourage of support vessels simply could not complete the journey back to Port Canaveral and the subsequent return to sea that would have been necessary to recovery both GovSat-1 and Falcon Heavy’s center core. Add in the potential need for repairs and expending GovSat-1 was a no-brainer for the launch company: Falcon Heavy’s center core could easily see at least one additional launch after it is recovered, whereas the twice-used 1032 effectively reached the end of its useful life after it separated from the second stage and GovSat payload earlier today.
As a result, SpaceX appears to have continued a trend of exploiting flight test opportunities to the greatest extent practicable by tasking B1032 with an experimental landing attempt. More specifically, Elon quickly added that the landing burn attempted by 1032 involved the ignition of three of the booster’s nine Merlin 1D engines during landing, whereas all SpaceX landings up to this point have occurred with a single Merlin 1D ignition. While the company already routinely utilizes three engines during some boostback and reentry burns, landing burns have always featured a single engine. However, by using three engines, it is entirely possible that SpaceX hopes to eventually move towards even more aggressive landing burns. While the obvious downsides likely include difficulty maintaining control and increased stresses on the booster, the benefits are also pretty inherent. By using more engines, the length of the landing burn could be drastically shortened, resulting in far more efficient propellant usage by minimizing losses to gravity (every second the rocket is trying to go upwards is a second fighting against Earth’s gravity, which pulls the rocket down at ~9.8 meters/second squared).
Incredibly, the booster somehow managed to pull off that three engine landing burn with some success, made apparent by the fact that it is intact and floating in the Atlantic, with some hope of being towed back to land. This is almost certainly the first time SpaceX has ever successfully landed a booster in the ocean without a subsequent breakup, an incredible achievement for a rocket that likely experienced exceptional stresses during reentry and landing. Time will tell how this impacts SpaceX’s future recovery efforts, but it is certainly promising as a method of extracting just a little extra performance from reusable Falcon 9s. In other words, future Falcon 9 missions might be able to carry heavier payloads into higher orbits while still being able to land at sea or even on land. Exciting times!
News
Tesla FSD fleet is nearing 7 billion total miles, including 2.5 billion city miles
As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles.
Tesla’s Full Self-Driving (Supervised) fleet is closing in on almost 7 billion total miles driven, as per data posted by the company on its official FSD webpage.
These figures hint at the massive scale of data fueling Tesla’s rapid FSD improvements, which have been quite notable as of late.
FSD mileage milestones
As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles. Tesla owner and avid FSD tester Whole Mars Catalog also shared a screenshot indicating that from the nearly 7 billion miles traveled by the FSD fleet, more than 2.5 billion miles were driven inside cities.
City miles are particularly valuable for complex urban scenarios like unprotected turns, pedestrian interactions, and traffic lights. This is also the difference-maker for FSD, as only complex solutions, such as Waymo’s self-driving taxis, operate similarly on inner-city streets. And even then, incidents such as the San Francisco blackouts have proven challenging for sensor-rich vehicles like Waymos.
Tesla’s data edge
Tesla has a number of advantages in the autonomous vehicle sector, one of which is the size of its fleet and the number of vehicles training FSD on real-world roads. Tesla’s nearly 7 billion FSD miles then allow the company to roll out updates that make its vehicles behave like they are being driven by experienced drivers, even if they are operating on their own.
So notable are Tesla’s improvements to FSD that NVIDIA Director of Robotics Jim Fan, after experiencing FSD v14, noted that the system is the first AI that passes what he described as a “Physical Turing Test.”
“Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies,” Fan wrote in a post on X.
News
Tesla starts showing how FSD will change lives in Europe
Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.
Tesla has launched Europe’s first public shuttle service using Full Self-Driving (Supervised) in the rural Eifelkreis Bitburg-Prüm region of Germany, demonstrating how the technology can restore independence and mobility for people who struggle with limited transport options.
Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.
Officials see real impact on rural residents
Arzfeld Mayor Johannes Kuhl and District Administrator Andreas Kruppert personally tested the Tesla shuttle service. This allowed them to see just how well FSD navigated winding lanes and rural roads confidently. Kruppert said, “Autonomous driving sounds like science fiction to many, but we simply see here that it works totally well in rural regions too.” Kuhl, for his part, also noted that FSD “feels like a very experienced driver.”
The pilot complements the area’s “Citizen Bus” program, which provides on-demand rides for elderly residents who can no longer drive themselves. Tesla Europe shared a video of a demonstration of the service, highlighting how FSD gives people their freedom back, even in places where public transport is not as prevalent.
What the Ministry for Economic Affairs and Transport says
Rhineland-Palatinate’s Minister Daniela Schmitt supported the project, praising the collaboration that made this “first of its kind in Europe” possible. As per the ministry, the rural rollout for the service shows FSD’s potential beyond major cities, and it delivers tangible benefits like grocery runs, doctor visits, and social connections for isolated residents.
“Reliable and flexible mobility is especially vital in rural areas. With the launch of a shuttle service using self-driving vehicles (FSD supervised) by Tesla in the Eifelkreis Bitburg-Prüm, an innovative pilot project is now getting underway that complements local community bus services. It is the first project of its kind in Europe.
“The result is a real gain for rural mobility: greater accessibility, more flexibility and tangible benefits for everyday life. A strong signal for innovation, cooperation and future-oriented mobility beyond urban centers,” the ministry wrote in a LinkedIn post.
News
Tesla China quietly posts Robotaxi-related job listing
Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.
Tesla has posted a new job listing in Shanghai explicitly tied to its Robotaxi program, fueling speculation that the company is preparing to launch its dedicated autonomous ride-hailing service in China.
As noted in the listing, Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.
Robotaxi-specific role
The listing, which was shared on social media platform X by industry watcher @tslaming, suggested that Tesla China is looking to fill the role urgently. The job listing itself specifically mentions that the person hired for the role will be working on the Low Voltage Hardware team, which would design the circuit boards that would serve as the nervous system of the Robotaxi.
Key tasks for the role, as indicated in the job listing, include collaboration with PCB layout, firmware, mechanical, program management, and validation teams, among other responsibilities. The role is based in Shanghai.
China Robotaxi launch
China represents a massive potential market for robotaxis, with its dense urban centers and supportive policies in select cities. Tesla has limited permission to roll out FSD in the country, though despite this, its vehicles have been hailed as among the best in the market when it comes to autonomous features. So far, at least, it appears that China supports Tesla’s FSD and Robotaxi rollout.
This was hinted at in November, when Tesla brought the Cybercab to the 8th China International Import Expo (CIIE) in Shanghai, marking the first time that the autonomous two-seater was brought to the Asia-Pacific region. The vehicle, despite not having a release date in China, received a significant amount of interest among the event’s attendees.
