

News
Elon Musk reveals SpaceX Falcon 9 survived a water landing test
Following the picture-perfect launch of GovSat-1 on Wednesday afternoon, SpaceX CEO Elon Musk took to Twitter with an extremely unusual bit of news. After separating from the second stage, events relating to Falcon 9’s first stage recovery operations were heard live in the background of SpaceX’s live coverage, leading to some additional intrigue around an already odd situation.
B1032, a flight-proven (reused) booster tasked with launching GovSat-1 on its second mission, was seen with landing legs and grid fins on its sooty exterior – a confusing appearance due to SpaceX’s statement that the core would be expended into the ocean after launch. Thankfully, Elon Musk’s tweets provide at least the beginning of an answer for the several oddities.
This rocket was meant to test very high retrothrust landing in water so it didn’t hurt the droneship, but amazingly it has survived. We will try to tow it back to shore. pic.twitter.com/hipmgdnq16
— Elon Musk (@elonmusk) January 31, 2018
As stated above, GovSat-1’s Falcon 9 booster (1032) was apparently being used to test an exceptionally aggressive landing burn in lieu of a drone ship beneath it. The lack of drone ship begins to make more sense with the added knowledge that 1032 was testing experimental landing procedures: in the relatively likely eventuality that something went wrong, the massive booster would have likely impacted Of Course I Still Love You at an extremely high velocity. Similar impacts have occurred before as SpaceX gradually perfected the new technologies and operational knowledge necessary to recover orbital-class rockets, but a basic understanding of rocketry implies that 1032’s OCISLY impact would have been uniquely destructive, likely taking the ship out of action for at least several weeks of repairs.
This would pose an inherent problem for the imminent launch of Falcon Heavy, with the center of three first stages currently scheduled to attempt a landing aboard the very same drone ship in less than a week. Under optimum conditions (sans huge explosions and general destruction), OCISLY and its entourage of support vessels simply could not complete the journey back to Port Canaveral and the subsequent return to sea that would have been necessary to recovery both GovSat-1 and Falcon Heavy’s center core. Add in the potential need for repairs and expending GovSat-1 was a no-brainer for the launch company: Falcon Heavy’s center core could easily see at least one additional launch after it is recovered, whereas the twice-used 1032 effectively reached the end of its useful life after it separated from the second stage and GovSat payload earlier today.
As a result, SpaceX appears to have continued a trend of exploiting flight test opportunities to the greatest extent practicable by tasking B1032 with an experimental landing attempt. More specifically, Elon quickly added that the landing burn attempted by 1032 involved the ignition of three of the booster’s nine Merlin 1D engines during landing, whereas all SpaceX landings up to this point have occurred with a single Merlin 1D ignition. While the company already routinely utilizes three engines during some boostback and reentry burns, landing burns have always featured a single engine. However, by using three engines, it is entirely possible that SpaceX hopes to eventually move towards even more aggressive landing burns. While the obvious downsides likely include difficulty maintaining control and increased stresses on the booster, the benefits are also pretty inherent. By using more engines, the length of the landing burn could be drastically shortened, resulting in far more efficient propellant usage by minimizing losses to gravity (every second the rocket is trying to go upwards is a second fighting against Earth’s gravity, which pulls the rocket down at ~9.8 meters/second squared).
Incredibly, the booster somehow managed to pull off that three engine landing burn with some success, made apparent by the fact that it is intact and floating in the Atlantic, with some hope of being towed back to land. This is almost certainly the first time SpaceX has ever successfully landed a booster in the ocean without a subsequent breakup, an incredible achievement for a rocket that likely experienced exceptional stresses during reentry and landing. Time will tell how this impacts SpaceX’s future recovery efforts, but it is certainly promising as a method of extracting just a little extra performance from reusable Falcon 9s. In other words, future Falcon 9 missions might be able to carry heavier payloads into higher orbits while still being able to land at sea or even on land. Exciting times!
Elon Musk
SpaceX posts Starship booster feat that’s so nutty, it doesn’t even look real
The Super Heavy booster’s feat was so impressive that the whole maneuver almost looked like it was AI-generated.

SpaceX has shared a video of a remarkable feat achieved by Starship’s Super Heavy booster during its 11th flight test.
The Super Heavy booster’s feat was so impressive that the whole maneuver, which was captured on video, almost looked like it was AI-generated.
Super Heavy’s picture perfect hover
As could be seen in the video shared by SpaceX, Starship’s Super Heavy booster, which is nearly 400 feet tall, smoothly returned to Earth and hovered above the Gulf of America for a few seconds before it went for its soft water landing. The booster’s picture-perfect maneuver before splashing down all but capped a near-flawless mission for Starship, which is about to enter its V3 era with Flight 12.
The booster’s balance and stability were so perfect that some users on X joked that the whole thing looked AI-generated. Considering the size of Super Heavy, as well as the fact that the booster was returning from space, the hovering display all but showed that SpaceX is dead serious about keeping its dominant lead in the spaceflight sector.
Starship V2’s curtain call
As noted in a Space.com report, Flight Test 11 achieved every major goal SpaceX had set for the mission, including deploying Starlink mass simulators, relighting Raptor engines in space, and executing a stable reentry for both the Starship Upper Stage and the Super Heavy booster. The feat also marked the second time a Super Heavy booster has been reflown, a milestone in SpaceX’s quest to make the entire Starship system fully reusable.
Starship’s V2 vehicle will now give way to the upgraded Starship V3, which is designed for faster turnaround and higher payload capacity. The Starship program is expected to pursue even more aggressive targets in the coming months as well, with Elon Musk stating on social media platform X that SpaceX will attempt a tower catch for Starship Upper Stage as early as spring 2026.
Elon Musk
After moving Tesla to Texas, Elon Musk is back in the Bay Area with Neuralink expansion
The news marks a noticeable step in Musk’s expanding presence in the Bay Area, despite the move of his biggest companies, Tesla and SpaceX, to Texas.

Recent reports have indicated that Elon Musk’s brain-implant startup, Neuralink, has leased a five-story, 144,000-square-foot building in South San Francisco. At the same time, Musk’s artificial intelligence startup xAI is reportedly also looking around for a Bay Area office.
The news marks a noticeable step in Musk’s expanding presence in the Bay Area, despite the move of his biggest companies, Tesla and SpaceX, to Texas.
Neuralink’s Bay Area expansion
As noted in a report from the San Francisco Business Times, the property that Neuralink has leased is located at 499 Forbes Boulevard, and it was built by Aralon Properties before it was leased to cancer test developer InterVenn Biosciences. The site, however, had remained vacant since 2023 after InterVenn canceled its 10-year lease.
xAI, Musk’s artificial intelligence startup, is reportedly scouting for an even larger Bay Area office as well, as noted in a report from the San Francisco Chronicle. Combined, the two ventures could secure nearly 400,000 square feet of local workspace, a move seen as a symbolic return of sorts for Musk-led innovation to Silicon Valley.
Neuralink’s momentum
Founded in 2016, Neuralink develops brain-computer interfaces intended to help paralyzed patients control digital devices through thought. The company received U.S. regulatory approval in 2023 to begin human trials, with its first patient, quadriplegic Noland Arbaugh, making headlines for his stunning ability to control a computer cursor and play games using only his mind. Since receiving his implant, Arbaugh has stated that he now browses the web, plays video games like Mario Kart, studies neuroscience, and operates his smart home without lifting a finger.
Nauralink is only just getting started, with Elon Musk noting on X that the company is busy preparing its next product, Blindsight, for human trials. As per Musk, Neuralink is “aiming to restore (limited) sight to the completely blind next year,” an aggressive target for a potentially life-changing device.
News
Tesla Cybercab tests seem to be ramping up again
Elon Musk has stated that he expects the company to achieve a run rate of 2 million Cybercabs annually.

Tesla seems to be ramping the tests of its autonomous two-seater, the Cybercab, once more. This was hinted at in recent drone footage from both the Fremont Factory and Gigafactory Texas.
The fresh sightings of the Cybercab in the Fremont Factory and Giga Texas have renewed conversations about the vehicle potentially being built with manual controls today.
Fresh Cybercab tests
As noted by longtime drone operator Joe Tegtmeyer on social media platform X, he recently spotted a Cybercab driving on Giga Texas’ South River Road to the West side. Interestingly enough, the longtime Giga Texas watcher noted that this was the first Cybercab that he had seen conducting road tests in a while.
Over in the Fremont Factory, another Cybercab was spotted driving around the facility’s testing area. Similar to the Cybercab in the Giga Texas sighting, the vehicle that was spotted in the Fremont Factory seemed to be manually driven, at least based on the way it was being steered. This behavior has incited speculations among Tesla watchers that current Cybercab test units have manual controls, unlike their production version, which would have no steering wheel or pedals.
Cybercab production preparation
The sightings of Cybercabs around the Fremont Factory and Giga Texas bode well for the vehicle’s development and impending production. It does, if any, complement reports that Tesla has been busy setting up production equipment for Giga Texas’ Cybercab production line. At the same time, drone footage around the Giga Texas complex has also revealed that Tesla is stockpiling some Cybercab castings, a likely sign that initial test production of the vehicle might soon begin.
The Cybercab is expected to be Tesla’s highest volume vehicle, with CEO Elon Musk stating that he expects the company to achieve a run rate of 2 million Cybercabs annually. He also mentioned that the Cybercab will be easy to produce thanks to its Unboxed manufacturing process, so much so that its production would resemble a high-speed consumer electronics line instead of an automotive assembly line.
-
News2 days ago
Tesla launches ‘Mad Max’ Full Self-Driving Speed Profile, its fastest yet
-
Elon Musk21 hours ago
Elon Musk was right all along about Tesla’s rivals and EV subsidies
-
News2 days ago
Tesla launches new interior option for Model Y
-
News2 days ago
Tesla just teased something crazy with the next Full Self-Driving update
-
News2 days ago
Tesla reportedly places large order for robot parts, hinting that Optimus V3 design is all but finalized
-
News1 day ago
Tesla exec hints at FSD Mad Max mode’s killer feature
-
News23 hours ago
Tesla ownership without home charging: Here’s how it’s done
-
News2 days ago
Tesla makes big move with its Insurance program