Connect with us

News

DeepSpace: Firefly set for smallsat industry’s second place trophy, Rocket Lab leads the pack

Published

on

This is a free preview of DeepSpace, Teslarati’s new member-only weekly newsletter. Each week, I’ll be taking a deep-dive into the most exciting developments in commercial space, from satellites and rockets to everything in between. Sign up for Teslarati’s newsletters here to receive a preview of our membership program.

In the race to a field dedicated smallsat launch vehicles, New Zealand startup Rocket Lab has already won first place, a fact that has been discussed several times in past Deep Space issues. After completing its first launch of 2019 on March 28th, Rocket Lab’s Electron rocket is ready for another mission as early as May 4th, a good sign for the company’s planned monthly launch cadence.

Despite Rocket Lab’s major success, there is plenty of room for additional competitors and/or complementary vehicles. Electron’s maximum payload hovers around ~225 kg (500 lb) to low Earth orbit (LEO), limiting its usefulness for any payloads that are larger than truly tiny satellites or in need of higher orbits. Also discussed on DeepSpace, there are 10+ serious startups with funding and hardware in work attempting to build said smallsat launch vehicles, ranging from the extremely tiny (Vector: 60 kg to LEO) to much larger rockets from companies like Relativity, ABL Space, and more. Firefly Space, however, is the startup that has arguably broken away from the pack in the last few months, firmly setting itself up to be second in line behind Rocket Lab.

Build, test, qualify


  • Firefly’s major leaps forward came in December 2018 and then April 2019, both related to testing the completed upper stage of the company’s Alpha rocket.
  • In December, the upper stage ignited for the first time. In April, the same upper stage successfully performed a mission-duration static fire that lasted a full 300 seconds (five minutes), the same length required for a rocket to reach orbit after separating from Alpha’s first stage.
    • For any launch vehicle development program, the first successful mission-duration test fire of an integrated rocket stage is arguably one of the most important milestones, second only to the same hardware’s inaugural launch.

  • Simultaneously, Firefly began integrated testing of the thrust section and Reaver engines that will be the basis of Alpha’s first stage. The rocket’s Lightning second stage engine has been tested extensively at this point in development, although the stage’s lone engine produces a maximum of ~70 kN (~16,000 lbf) of thrust.
    • The booster’s four Reaver engines will each produce ~170 kN (55,000 lbf) of thrust, around three times as much as Lightning. Alpha’s second stage is critical, but its first stage is arguably far more complex.
    • Despite the relative power differential, it’s still worth noting that Alpha’s entire first stage (736 kN/166,000 lbf) will be significantly less powerful than a single one of Falcon 9’s nine Merlin 1D engines (941 kN/212,000 lbf).
  • Although Alpha is far smaller than rockets like Falcon 9 or Atlas V, it will nominally be capable of launching 1000 kg to an altitude of 200 km (LEO) or ~650 kg to a 500-km sun-synchronous orbit (SSO). This translates to around 4.2X the performance of Rocket Lab’s Electron at 2.5X the cost per launch ($15M vs $6M).
    • Assuming no payload capacity is wasted, Alpha could thus be almost 50% cheaper than Electron when judged by cost per kilogram to orbit.
    • Of course, this comparison ignores the fact that Firefly will have to far more heavily rely on booking co-passenger satellites to keep Alpha launch prices competitive with Electron.
    • If exactly 1000kg or 630kg of cargo can’t be booked each launch, the expendable Alpha’s $15M launch cost will be distributed over less payload, raising costs for each customer. In other words, the competitive advantages of Alpha are almost entirely associated with its ability to launch payloads outside of Electron’s capabilities, as are its potential weaknesses.

Firefly Alpha’s upper stage qualification article (top) and a comparison of a variety of launch vehicles. (Teslarati)

The sweet spot

  • In theory, Firefly Alpha’s could find itself in a relatively sweet spot, where the rocket’s launch costs are not so high that dedicated rideshare missions become intractable (i.e. Spaceflight’s SSO-A launch on Falcon 9) but its payload performance is still good enough to provide access to a huge swath of the space launch market.
  • Firefly also has plans to develop a heavier launch vehicle based on Alpha, known as Beta. Conceptually equivalent to SpaceX’s Falcon Heavy, Beta would use three Alpha boosters and a significantly upgraded second stage and would be able to launch 4000 kg to LEO or 3000 kg to SSO.
  • Regardless of Firefly’s grander aspirations, Alpha is poised to capitalize on the simple fact that it will be the second commercially viable smallsat launch vehicle to begin operations. Alpha’s first orbital launch attempt could occur as early as December 2019, although slips into early 2020 are to be expected.
    • At that point, Rocket Lab’s Electron will be the only serious competition on the market. Relativity’s Terran and ABL Space’s RS-1 rockets plan to offer a competitive ~1250 kg to LEO or ~900 kg to SSO, but their launch debuts are tentatively scheduled no earlier than late 2020.
    • If Alpha’s development continues smoothly, Firefly could easily have a solid 12-month head start over its similarly-sized competitors,
  • Up next for Alpha is a similar campaign of tests focused on the first integrated booster, including tests fires and an eventual mission-duration qualification test.

Mission Updates 

  • SpaceX’s CRS-17 Cargo Dragon resupply mission has slipped an additional four days from April 30th to May 3rd (3:11 am EDT, 07:11 UTC) after the International Space Station (ISS) began suffering serious (but non-threatening) electrical issues. Additional launch delays could follow if the issue is not resolved in the next few days.
    • The first operational Starlink launch remains firmly on track for NET mid-May. According to SpaceX, all Flight 1 satellites are already in Florida, while the FCC approved the company’s modified constellation license – permitting Starlink operations after launch – on April 26th.
    • Due to CRS-17’s launch delays, the availability of SpaceX’s LC-40 pad will now likely be the main limiting factor for the Starlink-1 launch date.
  • SpaceX’s second West Coast launch of 2019 – carrying Canada’s Radarsat Constellation – is now expected to occur no earlier than mid-June and will reuse Falcon 9 B1051.
  • SpaceX’s launch of Spacecom’s Amos-17 spacecraft is now scheduled no earlier than July. Falcon Heavy Flight 3 is tentatively scheduled for launch as early as June 22 – all three boosters should be on site in Florida within the next week or two.

Photo of the Week:

(SpaceX)

The third Falcon Heavy center core – believed to be B1057 – was spotted eastbound in Arizona on April 16th. On April 26th, SpaceX confirmed that the booster completed its acceptance static fire test at the company’s McGregor, TX facilities, a sure sign that all of Falcon Heavy Flight 3’s major components should be in Florida within the next few weeks.

We’ll see you next week.

Not a member? Become a member today to receive DeepSpace each week! 

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Tesla called ‘biggest meme stock we’ve ever seen’ by Yale associate dean

Published

on

Credit: Tesla

Tesla (NASDAQ: TSLA) is being called “the biggest meme stock we’ve ever seen” by Yale School of Management Senior Associate Dean Jeff Sonnenfeld, who made the comments in a recent interview with CNBC.

Sonnenfeld’s comments echo those of many of the company’s skeptics, who argue that its price-to-earnings ratio is far too high when compared to other companies also in the tech industry. Tesla is often compared to companies like Apple, Nvidia, and Microsoft when these types of discussions come up.

Fundamentally, yes, Tesla does trade at a P/E level that is significantly above that of any comparable company.

However, it is worth mentioning that Tesla is not traded like a typical company, either.

Here’s what Sonnenfeld said regarding Tesla:

Advertisement

“This is the biggest meme stock we’ve ever seen. Even at its peak, Amazon was nowhere near this level. The PE on this, well above 200, is just crazy. When you’ve got stocks like Nvidia, the price-earnings ratio is around 25 or 30, and Apple is maybe 35 or 36, Microsoft around the same. I mean, this is way out of line to be at a 220 PE. It’s crazy, and they’ve, I think, put a little too much emphasis on the magic wand of Musk.”

Many analysts have admitted in the past that they believe Tesla is an untraditional stock in the sense that many analysts trade it based on narrative and not fundamentals. Ryan Brinkman of J.P. Morgan once said:

“Tesla shares continue to strike us as having become completely divorced from the fundamentals.”

Dan Nathan, another notorious skeptic of Tesla shares, recently turned bullish on the stock because of “technicals and sentiment.” He said just last week:

“I think from a trading perspective, it looks very interesting.”

Advertisement

Nathan said Tesla shares show signs of strength moving forward, including holding its 200-day moving average and holding against current resistance levels.

Sonnenfeld’s synopsis of Tesla shares points out that there might be “a little too much emphasis on the magic wand of Musk.”

Elon Musk just bought $1 billion in Tesla stock, his biggest purchase ever

This could refer to different things: perhaps his recent $1 billion stock buy, which sent the stock skyrocketing, or the fact that many Tesla investors are fans and owners who do not buy and sell on numbers, but rather on news that Musk might report himself.

Tesla is trading around $423.76 at the time of publication, as of 3:25 p.m. on the East Coast.

Advertisement
Continue Reading

News

Tesla makes big change to Full Self-Driving doghouse that drivers will like

Now, it is changing the timeframe of which strikes will be removed, cutting it in half. The strikes will be removed every 3.5 days, as long as no strikes are received during the time period.

Published

on

tesla cabin facing camera
Tesla's Cabin-facing camera is used to monitor driver attentiveness. (Credit: Andy Slye/YouTube)

Tesla is making a big change to its Full Self-Driving doghouse that drivers will like.

The doghouse is a hypothetical term used to describe the penalty period that Tesla applies to drivers who receive too many infractions related to distracted driving.

Previously, Tesla implemented a seven-day ban on the use of Full Self-Driving for those who received five strikes in a vehicle equipped with a cabin camera and three strikes for those without a cabin camera.

It also forgave one strike per week of Full Self-Driving use, provided the driver did not receive any additional strikes during the seven-day period.

Now, it is changing the timeframe of which strikes will be removed, cutting it in half. The strikes will be removed every 3.5 days, as long as no strikes are received during the time period.

Advertisement

The change was found by Not a Tesla App, which noticed the adjustment in the Owner’s Manual for the 2025.32 Software Update.

The system undoubtedly helps improve safety as it helps keep drivers honest. However, there are definitely workarounds, which people are using and promoting for monetary gain, and you can find them on basically any online marketplace, including TikTok shop and Amazon:

People are marketing the product as an FSD cheat device, which the cabin-facing camera will not be able to detect, allowing you to watch something on a phone or look through the windshield at the road.

The safeguards implemented by Tesla are designed to protect drivers from distractions and also protect the company itself from liability. People are still using Full Self-Driving as if it were a fully autonomous product, and it is not.

Tesla even says that the driver must pay attention and be ready to take over in any scenario:

“Yes. Autopilot is a driver assistance system that is intended to be used only with a fully attentive driver. It does not turn a Tesla into a fully autonomous vehicle.

Advertisement

Before enabling Autopilot, you must agree to “keep your hands on the steering wheel at all times” and to always “maintain control and responsibility for your vehicle.” Once engaged, Autopilot will also deliver an escalating series of visual and audio warnings, reminding you to place your hands on the wheel if insufficient torque is applied or your vehicle otherwise detects you may not be attentive enough to the road ahead. If you repeatedly ignore these warnings, you will be locked out from using Autopilot during that trip.

You can override any of Autopilot’s features at any time by steering or applying the accelerator at any time.”

It is good that Tesla is rewarding those who learn from their mistakes with this shorter timeframe to lose the strikes. It won’t be needed forever, though, as eventually, the company will solve autonomy. The question is: when?

Continue Reading

Elon Musk

Elon Musk teases the capabilities of the Tesla Roadster once again

Published

on

Elon Musk has once again teased the capabilities of the Tesla Roadster, fueling the anticipation that many have for the vehicle, despite it still having no public production or delivery date.

The Roadster is among the most anticipated vehicles in the automotive sector currently, and as Tesla has teased its capabilities, from a lightning-fast 1.1-second 0-60 MPH acceleration to potential hovering with cold-gas thrusters, people are eager to see it.

Although the design seemed to be finalized, there was still more work to be done. Earlier this year, as Tesla was showcasing some of the Roadster’s capabilities to Musk, he stated that it was capable of even more.

This pushed back its production date even further, much to the chagrin of those who have been waiting years for it.

Musk continues to tease us all, and as we sit here waiting hopelessly for it to be revealed, he said today that it is “something special beyond a car.”

Advertisement

Musk’s words were in response to a video posted by Tesla China, showing the Roadster in a new promotional video created by a fan.

The Roadster was planned to be released in 2020, but here we are in 2025, and there is still no sign of the vehicle entering production. However, Tesla did say earlier this year that it would host a demo event for the Roadster, where the company would showcase its capabilities.

Lars Moravy said earlier this year:

Advertisement

“Roadster is definitely in development. We did talk about it last Sunday night. We are gearing up for a super cool demo. It’s going to be mind-blowing; We showed Elon some cool demos last week of the tech we’ve been working on, and he got a little excited.”

Tesla exec gives big update on Roadster, confirming recent rumor

The delays have been attributed to “radically increased design goals” for the vehicle, which have, without a doubt, improved its capabilities, but at the same time, we just want to know if it’s ever going to come.

Tesla can always make it “better,” but at what point do you say, “Okay, it’s time to show this thing off.” They could always build another, even more capable supercar in the next ten years.

Advertisement
Continue Reading

Trending