Connect with us

News

GM buys LIDAR company for self-driving car program to take Tesla head-on

Published

on

General Motors issued a press release on Monday announcing that it will acquire Strobe, a California-based technology startup that makes affordable chip-scale LIDAR technology for self-driving cars. An 11-person team from Strobe will be joining GM’s Cruise Automation unit as part of the acquisition.

With more affordable and higher accuracy LIDAR sensors coming to market, automakers that are looking to transition to all-electric fleets are assessing the strategic value with investing into self-driving technology. GM’s purchase of Strobe can be seen as just that. Acquiring a small and nimble startup that has a core focus on developing the key sensor used in autonomous vehicles allows the Detroit-based auto giant to speed its path to market with a self-driving car.

Kyle Vogt, GM’s Cruise Automation Founder and CEO, said through a press release, “Strobe’s LIDAR technology will significantly improve the cost and capabilities of our vehicles so that we can more quickly accomplish our mission to deploy driverless vehicles at scale.”

While GM continues to charge forward with implementing LIDAR technology into its self-driving program, the company also complements its technology with radar sensors to create a fault-tolerant sensing suite. Tesla CEO Elon Musk has famously touted LIDAR as ‘unnecessary’ in the context of an autonomous car due to its high cost. Instead, Tesla has opted to use a combination of cameras, radars and ultrasonic sensors to form the foundation for its Autopilot system. But as pricing for LIDAR technology continues to drop, could we see a change of core design in future versions of Autopilot?

Vogt asserts that radar can operate under more challenging weather conditions, however it lacks the precision needed when making critical maneuvers at speed. “Strobe’s LIDAR sensors provide both accurate distance and velocity information, which can be checked against similar information from a RADAR sensor for redundancy. RADARs typically also provide distance and velocity information and operate under more challenging weather conditions, but they lack the angular resolution needed to make certain critical maneuvers at speed. When used together, cameras, LIDARs, and RADARs can complement each other to create a robust and fault-tolerant sensing suite that operates in a wide range of environmental and lighting conditions.” said Vogt in a blog post on Medium.

LIDAR on the other hand uses laser or concentrated light to map a high resolution 3D view of a the world, which arguably provides a higher precision view of a self-driving car’s surroundings. GM’s Director of autonomous vehicle integration has recently spoken up against Musk’s narrative that Tesla Autopilot will be fully autonomous and capable of piloting a car from California to New York on its own by the end of the year.

“The level of technology and knowing what it takes to do the mission, to say you can be a full level five with just cameras and radars is not physically possible,” said Miller about Tesla’s Autopilot suite. “Could you do it with what’s in a current Tesla Model S? I don’t think so.”

As the race to produce a fully autonomous car continues to heat up between Tesla, GM, Uber, and Google, and hardware prices decline, it’s only a matter of time before a tried and true combination of hardware will become the de-facto self-driving hardware suite. What will it be?

Advertisement
-->

 

Advertisement
Comments

News

Tesla FSD fleet is nearing 7 billion total miles, including 2.5 billion city miles

As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles.

Published

on

Tesla’s Full Self-Driving (Supervised) fleet is closing in on almost 7 billion total miles driven, as per data posted by the company on its official FSD webpage. 

These figures hint at the massive scale of data fueling Tesla’s rapid FSD improvements, which have been quite notable as of late.

FSD mileage milestones

As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles. Tesla owner and avid FSD tester Whole Mars Catalog also shared a screenshot indicating that from the nearly 7 billion miles traveled by the FSD fleet, more than 2.5 billion miles were driven inside cities. 

City miles are particularly valuable for complex urban scenarios like unprotected turns, pedestrian interactions, and traffic lights. This is also the difference-maker for FSD, as only complex solutions, such as Waymo’s self-driving taxis, operate similarly on inner-city streets. And even then, incidents such as the San Francisco blackouts have proven challenging for sensor-rich vehicles like Waymos. 

Tesla’s data edge

Tesla has a number of advantages in the autonomous vehicle sector, one of which is the size of its fleet and the number of vehicles training FSD on real-world roads. Tesla’s nearly 7 billion FSD miles then allow the company to roll out updates that make its vehicles behave like they are being driven by experienced drivers, even if they are operating on their own. 

Advertisement
-->

So notable are Tesla’s improvements to FSD that NVIDIA Director of Robotics Jim Fan, after experiencing FSD v14, noted that the system is the first AI that passes what he described as a “Physical Turing Test.” 

“Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies,” Fan wrote in a post on X. 

Continue Reading

News

Tesla starts showing how FSD will change lives in Europe

Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.

Published

on

Credit: Grok Imagine

Tesla has launched Europe’s first public shuttle service using Full Self-Driving (Supervised) in the rural Eifelkreis Bitburg-Prüm region of Germany, demonstrating how the technology can restore independence and mobility for people who struggle with limited transport options. 

Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.

Officials see real impact on rural residents

Arzfeld Mayor Johannes Kuhl and District Administrator Andreas Kruppert personally tested the Tesla shuttle service. This allowed them to see just how well FSD navigated winding lanes and rural roads confidently. Kruppert said, “Autonomous driving sounds like science fiction to many, but we simply see here that it works totally well in rural regions too.” Kuhl, for his part, also noted that FSD “feels like a very experienced driver.”

The pilot complements the area’s “Citizen Bus” program, which provides on-demand rides for elderly residents who can no longer drive themselves. Tesla Europe shared a video of a demonstration of the service, highlighting how FSD gives people their freedom back, even in places where public transport is not as prevalent.

What the Ministry for Economic Affairs and Transport says

Rhineland-Palatinate’s Minister Daniela Schmitt supported the project, praising the collaboration that made this “first of its kind in Europe” possible. As per the ministry, the rural rollout for the service shows FSD’s potential beyond major cities, and it delivers tangible benefits like grocery runs, doctor visits, and social connections for isolated residents. 

Advertisement
-->

“Reliable and flexible mobility is especially vital in rural areas. With the launch of a shuttle service using self-driving vehicles (FSD supervised) by Tesla in the Eifelkreis Bitburg-Prüm, an innovative pilot project is now getting underway that complements local community bus services. It is the first project of its kind in Europe. 

“The result is a real gain for rural mobility: greater accessibility, more flexibility and tangible benefits for everyday life. A strong signal for innovation, cooperation and future-oriented mobility beyond urban centers,” the ministry wrote in a LinkedIn post

Continue Reading

News

Tesla China quietly posts Robotaxi-related job listing

Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.

Published

on

Credit: Tesla

Tesla has posted a new job listing in Shanghai explicitly tied to its Robotaxi program, fueling speculation that the company is preparing to launch its dedicated autonomous ride-hailing service in China. 

As noted in the listing, Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.

Robotaxi-specific role

The listing, which was shared on social media platform X by industry watcher @tslaming, suggested that Tesla China is looking to fill the role urgently. The job listing itself specifically mentions that the person hired for the role will be working on the Low Voltage Hardware team, which would design the circuit boards that would serve as the nervous system of the Robotaxi. 

Key tasks for the role, as indicated in the job listing, include collaboration with PCB layout, firmware, mechanical, program management, and validation teams, among other responsibilities. The role is based in Shanghai.

China Robotaxi launch

China represents a massive potential market for robotaxis, with its dense urban centers and supportive policies in select cities. Tesla has limited permission to roll out FSD in the country, though despite this, its vehicles have been hailed as among the best in the market when it comes to autonomous features. So far, at least, it appears that China supports Tesla’s FSD and Robotaxi rollout.

Advertisement
-->

This was hinted at in November, when Tesla brought the Cybercab to the 8th China International Import Expo (CIIE) in Shanghai, marking the first time that the autonomous two-seater was brought to the Asia-Pacific region. The vehicle, despite not having a release date in China, received a significant amount of interest among the event’s attendees. 

Continue Reading