Connect with us

News

Google’s DeepMind unit develops AI that predicts 3D layouts from partial images

[Credit: Google DeepMind]

Published

on

Google’s DeepMind unit, the same division that created AlphaGo, an AI that outplayed the best Go player in the world, has created a neural network capable of rendering an accurate 3D environment from just a few still images, filling in the gaps with an AI form of perceptual intuition.

According to Google’s official DeepMind blog, the goal of its recent AI project is to make neural networks easier and simpler to train. Today’s most advanced AI-powered visual recognition systems are trained through the use of large datasets comprised of images that are human-annotated. This makes training a very tedious, lengthy, and expensive process, as every aspect of every object in each scene in the dataset has to be labeled by a person.

The DeepMind team’s new AI, dubbed the Generative Query Network (GQN) is designed to remove this dependency on human-annotated data, as the GQN is designed to infer a space’s three-dimensional layout and features despite being provided with only partial images of a space.

Similar to babies and animals, DeepMind’s GQN learns by making observations of the world around it. By doing so, DeepMind’s new AI learns about plausible scenes and their geometrical properties even without human labeling. The GQN is comprised of two parts — a representation network that produces a vector describing a scene and a generation network that “imagines” the scene from a previously unobserved viewpoint. So far, the results of DeepMind’s training for the AI have been encouraging, with the GQN being able to create representations of objects and rooms based on just a single image.

As noted by the DeepMind team, however, the training methods that have been used for the development of the GQN are still limited compared to traditional computer vision techniques. The AI creators, however, remain optimistic that as new sources of data become available and as improvements in hardware get introduced, the applications for the GQN framework could move over to higher-resolution images of real-world scenes. Ultimately, the DeepMind team believes that the GQN could be a useful system in technologies such as augmented reality and self-driving vehicles by giving them a form of perceptual intuition – extremely desirable for companies focused on autonomy, like Tesla.

Advertisement
-->

Google DeepMind’s GQN AI in action. [Credit: Google DeepMind]

In a talk at Train AI 2018 last May, Tesla’s head of AI Andrej Karpathy discussed the challenges involved in training the company’s Autopilot system. Tesla trains Autopilot by feeding the system with massive data sets from the company’s fleet of vehicles. This data is collected through means such as Shadow Mode, which allows the company to gather statistical data to show false positives and false negatives of Autopilot software.

During his talk, Karpathy discussed how features such as blinker detection become challenging for Tesla’s neural network to learn, considering that vehicles on the road have their turn signals off most of the time and blinkers have a high variability from one car brand to another. Karpathy also discussed how Tesla has transitioned a huge portion of its AI team to labeling roles, doing the human annotation that Google DeepMind explicitly wants to avoid with the GQN. 

Musk also mentioned that its upcoming all-electric supercar — the next-generation Tesla Roadster — would feature an “Augmented Mode” that would enhance drivers’ capability to operate the high-performance vehicle. With Tesla’s flagship supercar seemingly set on embracing AR technology, the emergence of new techniques for training AI such as Google DeepMind’s GQN would be a perfect fit for the next generation of vehicles about to enter the automotive market.

Simon is an experienced automotive reporter with a passion for electric cars and clean energy. Fascinated by the world envisioned by Elon Musk, he hopes to make it to Mars (at least as a tourist) someday. For stories or tips--or even to just say a simple hello--send a message to his email, simon@teslarati.com or his handle on X, @ResidentSponge.

Advertisement
Comments

Elon Musk

Elon Musk and Tesla AI Director share insights after empty driver seat Robotaxi rides

The executives’ unoccupied tests hint at the rapid progress of Tesla’s unsupervised Robotaxi efforts.

Published

on

Ashok Elluswamy

Tesla CEO Elon Musk and AI Director Ashok Elluswamy celebrated Christmas Eve by sharing personal experiences with Robotaxi vehicles that had no safety monitor or occupant in the driver’s seat. Musk described the system’s “perfect driving” around Austin, while Elluswamy posted video from the back seat, calling it “an amazing experience.”

The executives’ unoccupied tests hint at the rapid progress of Tesla’s unsupervised Robotaxi efforts.

Elon and Ashok’s firsthand Robotaxi insights

Prior to Musk and the Tesla AI Director’s posts, sightings of unmanned Teslas navigating public roads were widely shared on social media. One such vehicle was spotted in Austin, Texas, which Elon Musk acknowleged by stating that “Testing is underway with no occupants in the car.” 

Based on his Christmas Eve post, Musk seemed to have tested an unmanned Tesla himself. “A Tesla with no safety monitor in the car and me sitting in the passenger seat took me all around Austin on Sunday with perfect driving,” Musk wrote in his post.

Elluswamy responded with a 2-minute video showing himself in the rear of an unmanned Tesla. The video featured the vehicle’s empty front seats, as well as its smooth handling through real-world traffic. He captioned his video with the words, “It’s an amazing experience!”

Advertisement
-->

Towards Unsupervised operations

During an xAI Hackathon earlier this month, Elon Musk mentioned that Tesla owed be removing Safety Monitors from its Robotaxis in Austin in just three weeks. “Unsupervised is pretty much solved at this point. So there will be Tesla Robotaxis operating in Austin with no one in them. Not even anyone in the passenger seat in about three weeks,” he said. Musk echoed similar estimates at the 2025 Annual Shareholder Meeting and the Q3 2025 earnings call.

Considering the insights that were posted Musk and Elluswamy, it does appear that Tesla is working hard towards operating its Robotaxis with no safety monitors. This is quite impressive considering that the service was launched just earlier this year.

Continue Reading

Elon Musk

Starlink passes 9 million active customers just weeks after hitting 8 million

The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.

Published

on

Credit: Starlink/X

SpaceX’s Starlink satellite internet service has continued its rapid global expansion, surpassing 9 million active customers just weeks after crossing the 8 million mark. 

The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.

9 million customers

In a post on X, SpaceX stated that Starlink now serves over 9 million active users across 155 countries, territories, and markets. The company reached 8 million customers in early November, meaning it added roughly 1 million subscribers in under seven weeks, or about 21,275 new users on average per day. 

“Starlink is connecting more than 9M active customers with high-speed internet across 155 countries, territories, and many other markets,” Starlink wrote in a post on its official X account. SpaceX President Gwynne Shotwell also celebrated the milestone on X. “A huge thank you to all of our customers and congrats to the Starlink team for such an incredible product,” she wrote. 

That growth rate reflects both rising demand for broadband in underserved regions and Starlink’s expanding satellite constellation, which now includes more than 9,000 low-Earth-orbit satellites designed to deliver high-speed, low-latency internet worldwide.

Advertisement
-->

Starlink’s momentum

Starlink’s momentum has been building up. SpaceX reported 4.6 million Starlink customers in December 2024, followed by 7 million by August 2025, and 8 million customers in November. Independent data also suggests Starlink usage is rising sharply, with Cloudflare reporting that global web traffic from Starlink users more than doubled in 2025, as noted in an Insider report.

Starlink’s momentum is increasingly tied to SpaceX’s broader financial outlook. Elon Musk has said the satellite network is “by far” the company’s largest revenue driver, and reports suggest SpaceX may be positioning itself for an initial public offering as soon as next year, with valuations estimated as high as $1.5 trillion. Musk has also suggested in the past that Starlink could have its own IPO in the future. 

Continue Reading

News

NVIDIA Director of Robotics: Tesla FSD v14 is the first AI to pass the “Physical Turing Test”

After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine.

Published

on

Credit: Grok Imagine

NVIDIA Director of Robotics Jim Fan has praised Tesla’s Full Self-Driving (Supervised) v14 as the first AI to pass what he described as a “Physical Turing Test.”

After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine. And just like smartphones today, removing it now would “actively hurt.”

Jim Fan’s hands-on FSD v14 impressions

Fan, a leading researcher in embodied AI who is currently solving Physical AI at NVIDIA and spearheading the company’s Project GR00T initiative, noted that he actually was late to the Tesla game. He was, however, one of the first to try out FSD v14

“I was very late to own a Tesla but among the earliest to try out FSD v14. It’s perhaps the first time I experience an AI that passes the Physical Turing Test: after a long day at work, you press a button, lay back, and couldn’t tell if a neural net or a human drove you home,” Fan wrote in a post on X. 

Fan added: “Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies.”

Advertisement
-->

The Physical Turing Test

The original Turing Test was conceived by Alan Turing in 1950, and it was aimed at determining if a machine could exhibit behavior that is equivalent to or indistinguishable from a human. By focusing on text-based conversations, the original Turing Test set a high bar for natural language processing and machine learning. 

This test has been passed by today’s large language models. However, the capability to converse in a humanlike manner is a completely different challenge from performing real-world problem-solving or physical interactions. Thus, Fan introduced the Physical Turing Test, which challenges AI systems to demonstrate intelligence through physical actions.

Based on Fan’s comments, Tesla has demonstrated these intelligent physical actions with FSD v14. Elon Musk agreed with the NVIDIA executive, stating in a post on X that with FSD v14, “you can sense the sentience maturing.” Musk also praised Tesla AI, calling it the best “real-world AI” today.

Continue Reading