News
Google’s DeepMind unit develops AI that predicts 3D layouts from partial images
Google’s DeepMind unit, the same division that created AlphaGo, an AI that outplayed the best Go player in the world, has created a neural network capable of rendering an accurate 3D environment from just a few still images, filling in the gaps with an AI form of perceptual intuition.
According to Google’s official DeepMind blog, the goal of its recent AI project is to make neural networks easier and simpler to train. Today’s most advanced AI-powered visual recognition systems are trained through the use of large datasets comprised of images that are human-annotated. This makes training a very tedious, lengthy, and expensive process, as every aspect of every object in each scene in the dataset has to be labeled by a person.
The DeepMind team’s new AI, dubbed the Generative Query Network (GQN) is designed to remove this dependency on human-annotated data, as the GQN is designed to infer a space’s three-dimensional layout and features despite being provided with only partial images of a space.
Similar to babies and animals, DeepMind’s GQN learns by making observations of the world around it. By doing so, DeepMind’s new AI learns about plausible scenes and their geometrical properties even without human labeling. The GQN is comprised of two parts — a representation network that produces a vector describing a scene and a generation network that “imagines” the scene from a previously unobserved viewpoint. So far, the results of DeepMind’s training for the AI have been encouraging, with the GQN being able to create representations of objects and rooms based on just a single image.
As noted by the DeepMind team, however, the training methods that have been used for the development of the GQN are still limited compared to traditional computer vision techniques. The AI creators, however, remain optimistic that as new sources of data become available and as improvements in hardware get introduced, the applications for the GQN framework could move over to higher-resolution images of real-world scenes. Ultimately, the DeepMind team believes that the GQN could be a useful system in technologies such as augmented reality and self-driving vehicles by giving them a form of perceptual intuition – extremely desirable for companies focused on autonomy, like Tesla.

Google DeepMind’s GQN AI in action. [Credit: Google DeepMind]
In a talk at Train AI 2018 last May, Tesla’s head of AI Andrej Karpathy discussed the challenges involved in training the company’s Autopilot system. Tesla trains Autopilot by feeding the system with massive data sets from the company’s fleet of vehicles. This data is collected through means such as Shadow Mode, which allows the company to gather statistical data to show false positives and false negatives of Autopilot software.
During his talk, Karpathy discussed how features such as blinker detection become challenging for Tesla’s neural network to learn, considering that vehicles on the road have their turn signals off most of the time and blinkers have a high variability from one car brand to another. Karpathy also discussed how Tesla has transitioned a huge portion of its AI team to labeling roles, doing the human annotation that Google DeepMind explicitly wants to avoid with the GQN.
Musk also mentioned that its upcoming all-electric supercar — the next-generation Tesla Roadster — would feature an “Augmented Mode” that would enhance drivers’ capability to operate the high-performance vehicle. With Tesla’s flagship supercar seemingly set on embracing AR technology, the emergence of new techniques for training AI such as Google DeepMind’s GQN would be a perfect fit for the next generation of vehicles about to enter the automotive market.
Elon Musk
Tesla’s Elon Musk: 10 billion miles needed for safe Unsupervised FSD
As per the CEO, roughly 10 billion miles of training data are required due to reality’s “super long tail of complexity.”
Tesla CEO Elon Musk has provided an updated estimate for the training data needed to achieve truly safe unsupervised Full Self-Driving (FSD).
As per the CEO, roughly 10 billion miles of training data are required due to reality’s “super long tail of complexity.”
10 billion miles of training data
Musk comment came as a reply to Apple and Rivian alum Paul Beisel, who posted an analysis on X about the gap between tech demonstrations and real-world products. In his post, Beisel highlighted Tesla’s data-driven lead in autonomy, and he also argued that it would not be easy for rivals to become a legitimate competitor to FSD quickly.
“The notion that someone can ‘catch up’ to this problem primarily through simulation and limited on-road exposure strikes me as deeply naive. This is not a demo problem. It is a scale, data, and iteration problem— and Tesla is already far, far down that road while others are just getting started,” Beisel wrote.
Musk responded to Beisel’s post, stating that “Roughly 10 billion miles of training data is needed to achieve safe unsupervised self-driving. Reality has a super long tail of complexity.” This is quite interesting considering that in his Master Plan Part Deux, Elon Musk estimated that worldwide regulatory approval for autonomous driving would require around 6 billion miles.
FSD’s total training miles
As 2025 came to a close, Tesla community members observed that FSD was already nearing 7 billion miles driven, with over 2.5 billion miles being from inner city roads. The 7-billion-mile mark was passed just a few days later. This suggests that Tesla is likely the company today with the most training data for its autonomous driving program.
The difficulties of achieving autonomy were referenced by Elon Musk recently, when he commented on Nvidia’s Alpamayo program. As per Musk, “they will find that it’s easy to get to 99% and then super hard to solve the long tail of the distribution.” These sentiments were echoed by Tesla VP for AI software Ashok Elluswamy, who also noted on X that “the long tail is sooo long, that most people can’t grasp it.”
News
Tesla earns top honors at MotorTrend’s SDV Innovator Awards
MotorTrend’s SDV Awards were presented during CES 2026 in Las Vegas.
Tesla emerged as one of the most recognized automakers at MotorTrend’s 2026 Software-Defined Vehicle (SDV) Innovator Awards.
As could be seen in a press release from the publication, two key Tesla employees were honored for their work on AI, autonomy, and vehicle software. MotorTrend’s SDV Awards were presented during CES 2026 in Las Vegas.
Tesla leaders and engineers recognized
The fourth annual SDV Innovator Awards celebrate pioneers and experts who are pushing the automotive industry deeper into software-driven development. Among the most notable honorees for this year was Ashok Elluswamy, Tesla’s Vice President of AI Software, who received a Pioneer Award for his role in advancing artificial intelligence and autonomy across the company’s vehicle lineup.
Tesla also secured recognition in the Expert category, with Lawson Fulton, a staff Autopilot machine learning engineer, honored for his contributions to Tesla’s driver-assistance and autonomous systems.
Tesla’s software-first strategy
While automakers like General Motors, Ford, and Rivian also received recognition, Tesla’s multiple awards stood out given the company’s outsized role in popularizing software-defined vehicles over the past decade. From frequent OTA updates to its data-driven approach to autonomy, Tesla has consistently treated vehicles as evolving software platforms rather than static products.
This has made Tesla’s vehicles very unique in their respective sectors, as they are arguably the only cars that objectively get better over time. This is especially true for vehicles that are loaded with the company’s Full Self-Driving system, which are getting progressively more intelligent and autonomous over time. The majority of Tesla’s updates to its vehicles are free as well, which is very much appreciated by customers worldwide.
Elon Musk
Judge clears path for Elon Musk’s OpenAI lawsuit to go before a jury
The decision maintains Musk’s claims that OpenAI’s shift toward a for-profit structure violated early assurances made to him as a co-founder.
A U.S. judge has ruled that Elon Musk’s lawsuit accusing OpenAI of abandoning its founding nonprofit mission can proceed to a jury trial.
The decision maintains Musk’s claims that OpenAI’s shift toward a for-profit structure violated early assurances made to him as a co-founder. These claims are directly opposed by OpenAI.
Judge says disputed facts warrant a trial
At a hearing in Oakland, U.S. District Judge Yvonne Gonzalez Rogers stated that there was “plenty of evidence” suggesting that OpenAI leaders had promised that the organization’s original nonprofit structure would be maintained. She ruled that those disputed facts should be evaluated by a jury at a trial in March rather than decided by the court at this stage, as noted in a Reuters report.
Musk helped co-found OpenAI in 2015 but left the organization in 2018. In his lawsuit, he argued that he contributed roughly $38 million, or about 60% of OpenAI’s early funding, based on assurances that the company would remain a nonprofit dedicated to the public benefit. He is seeking unspecified monetary damages tied to what he describes as “ill-gotten gains.”
OpenAI, however, has repeatedly rejected Musk’s allegations. The company has stated that Musk’s claims were baseless and part of a pattern of harassment.
Rivalries and Microsoft ties
The case unfolds against the backdrop of intensifying competition in generative artificial intelligence. Musk now runs xAI, whose Grok chatbot competes directly with OpenAI’s flagship ChatGPT. OpenAI has argued that Musk is a frustrated commercial rival who is simply attempting to slow down a market leader.
The lawsuit also names Microsoft as a defendant, citing its multibillion-dollar partnerships with OpenAI. Microsoft has urged the court to dismiss the claims against it, arguing there is no evidence it aided or abetted any alleged misconduct. Lawyers for OpenAI have also pushed for the case to be thrown out, claiming that Musk failed to show sufficient factual basis for claims such as fraud and breach of contract.
Judge Gonzalez Rogers, however, declined to end the case at this stage, noting that a jury would also need to consider whether Musk filed the lawsuit within the applicable statute of limitations. Still, the dispute between Elon Musk and OpenAI is now headed for a high-profile jury trial in the coming months.