Connect with us

News

Google wants to make “good” AI with your help

Google office in Zurich [Credit: Google]

Published

on

As a company with a global presence to the tune of at least a billion people, Google is taking both its immense tech capabilities and social responsibility role very seriously. Namely, it has pledged to provide tangible support to organizations wanting to help address societal challenges using artificial intelligence through its just announced “AI Impact Challenge”. Whether an idea needs coaching, grant funding from a pool of $25 million available, or credit and consulting from cloud services, Google will be there to help.

Towards this effort, the company has already provided an educational guide to machine learning, the primary tool it wants organizations to utilize in its problem-solving. It might seem counterintuitive for a proposer to need training on the very thing it’s proposing, but this is part of the point of Google’s support. To quote Google’s project page directly, “We want people from as many backgrounds as possible to surface problems that AI can help solve, and to be empowered to create solutions themselves…We don’t expect applicants to be AI experts.” Submissions are open until January 22, 2019, and winners will be announced in spring 2019.

Need inspiration for an idea? Or, perhaps, some examples of the kinds of problems that artificial intelligence can help solve? Google’s page dedicated to its “AI for social good” mission has featured projects that are already working towards societally beneficial goals. Here’s a breakdown of some of them:

  • The “Smart Wildfire Sensor” is a device that identifies and predicts areas in a forest that are susceptible to wildfires. To do this, it uses data from tools measuring wind speed, wind direction, humidity, and temperature combined with Google’s open source machine learning tool TensorFlow for photographic analysis of biomass (accumulated fallen branches and trees).
  • Protecting whales from preventable accidents such as entanglement in fishing gear and collisions with vessels is a challenge being addressed using whale songs and machine learning to locate where they’re singing from. The National Oceanic and Atmospheric Administration (NOAA) uses underwater audio recordings to identify and mitigate the presence of dangers in the estimated areas where whales are present. The thousands of hours of recordings accumulated presented a data challenge well suited to Google’s existing sound classification AI to help meet NOAA’s needs with conservation efforts.
  • As a top cause of infant mortality in the world, birth asphyxia is a serious threat needing all the tools available to new parents. Using machine learning trained to recognize the cries of a newborn with this condition, the company Ubenwa has developed a mobile app enabling a recording of a baby’s cry to be uploaded and diagnosed.

“With great power comes great responsibility” is a familiar motto that applies to the state of modern tech just as much as superheroes. For example, the fast-paced field of artificial intelligence brings frequent developments that challenge our security as a society, thus needing caution. However, the massive companies driving the primary innovations being used among the public on a grand scale are one of the larger demonstrations of this where this motto really applies in today’s world.

Google sharply felt the weight of its responsibility recently when its role in assisting the US Department of Defense to analyze drone footage (Project Maven) was revealed. The “Don’t be evil” part of the company’s Code of Conduct at the time appeared to be violated through the military assistance, and renewal of the contract has since been canceled. Google’s further work on its Chinese search engine with censorship in accordance with the communist government’s requirements has also drawn protest from both inside and outside the company. Given this background, a new project focused on doing “good” things for the benefit of society might be seen as possible damage control. The timing might be suspect, but it’s worth noting that, as seen in the projects described above, Google has been working to help with societal needs for quite some time already.

Overall, headlines in recent years have demonstrated just how flexible AI can be when it comes to solving challenges that face our world. While the fears brought on by future “intelligent” computers may have a foundation in reality, it may do us a great amount of good to turn our focus on the hope such technology can also bring. Whatever Google’s motivation is for launching its “AI for social good project”, if good is achieved, it may just be a win for us all.

Advertisement
-->

Accidental computer geek, fascinated by most history and the multiplanetary future on its way. Quite keen on the democratization of space. | It's pronounced day-sha, but I answer to almost any variation thereof.

Advertisement
Comments

News

Nvidia CEO Jensen Huang explains difference between Tesla FSD and Alpamayo

“Tesla’s FSD stack is completely world-class,” the Nvidia CEO said.

Published

on

Credit: Grok Imagine

NVIDIA CEO Jensen Huang has offered high praise for Tesla’s Full Self-Driving (FSD) system during a Q&A at CES 2026, calling it “world-class” and “state-of-the-art” in design, training, and performance. 

More importantly, he also shared some insights about the key differences between FSD and Nvidia’s recently announced Alpamayo system. 

Jensen Huang’s praise for Tesla FSD

Nvidia made headlines at CES following its announcement of Alpamayo, which uses artificial intelligence to accelerate the development of autonomous driving solutions. Due to its focus on AI, many started speculating that Alpamayo would be a direct rival to FSD. This was somewhat addressed by Elon Musk, who predicted that “they will find that it’s easy to get to 99% and then super hard to solve the long tail of the distribution.”

During his Q&A, Nvidia CEO Jensen Huang was asked about the difference between FSD and Alpamayo. His response was extensive:

“Tesla’s FSD stack is completely world-class. They’ve been working on it for quite some time. It’s world-class not only in the number of miles it’s accumulated, but in the way it’s designed, the way they do training, data collection, curation, synthetic data generation, and all of their simulation technologies. 

Advertisement
-->

“Of course, the latest generation is end-to-end Full Self-Driving—meaning it’s one large model trained end to end. And so… Elon’s AD system is, in every way, 100% state-of-the-art. I’m really quite impressed by the technology. I have it, and I drive it in our house, and it works incredibly well,” the Nvidia CEO said. 

Nvidia’s platform approach vs Tesla’s integration

Huang also stated that Nvidia’s Alpamayo system was built around a fundamentally different philosophy from Tesla’s. Rather than developing self-driving cars itself, Nvidia supplies the full autonomous technology stack for other companies to use.

“Nvidia doesn’t build self-driving cars. We build the full stack so others can,” Huang said, explaining that Nvidia provides separate systems for training, simulation, and in-vehicle computing, all supported by shared software.

He added that customers can adopt as much or as little of the platform as they need, noting that Nvidia works across the industry, including with Tesla on training systems and companies like Waymo, XPeng, and Nuro on vehicle computing.

“So our system is really quite pervasive because we’re a technology platform provider. That’s the primary difference. There’s no question in our mind that, of the billion cars on the road today, in another 10 years’ time, hundreds of millions of them will have great autonomous capability. This is likely one of the largest, fastest-growing technology industries over the next decade.”

Advertisement
-->

He also emphasized Nvidia’s open approach, saying the company open-sources its models and helps partners train their own systems. “We’re not a self-driving car company. We’re enabling the autonomous industry,” Huang said.

Continue Reading

Elon Musk

Elon Musk confirms xAI’s purchase of five 380 MW natural gas turbines

The deal, which was confirmed by Musk on X, highlights xAI’s effort to aggressively scale its operations.

Published

on

Credit: xAI/X

xAI, Elon Musk’s artificial intelligence startup, has purchased five additional 380 MW natural gas turbines from South Korea’s Doosan Enerbility to power its growing supercomputer clusters. 

The deal, which was confirmed by Musk on X, highlights xAI’s effort to aggressively scale its operations.

xAI’s turbine deal details

News of xAI’s new turbines was shared on social media platform X, with user @SemiAnalysis_ stating that the turbines were produced by South Korea’s Doosan Enerbility. As noted in an Asian Business Daily report, Doosan Enerbility announced last October that it signed a contract to supply two 380 MW gas turbines for a major U.S. tech company. Doosan later noted in December that it secured an order for three more 380 MW gas turbines.

As per the X user, the gas turbines would power an additional 600,000+ GB200 NVL72 equivalent size cluster. This should make xAI’s facilities among the largest in the world. In a reply, Elon Musk confirmed that xAI did purchase the turbines. “True,” Musk wrote in a post on X. 

xAI’s ambitions 

Recent reports have indicated that xAI closed an upsized $20 billion Series E funding round, exceeding the initial $15 billion target to fuel rapid infrastructure scaling and AI product development. The funding, as per the AI startup, “will accelerate our world-leading infrastructure buildout, enable the rapid development and deployment of transformative AI products.”

Advertisement
-->

The company also teased the rollout of its upcoming frontier AI model. “Looking ahead, Grok 5 is currently in training, and we are focused on launching innovative new consumer and enterprise products that harness the power of Grok, Colossus, and 𝕏 to transform how we live, work, and play,” xAI wrote in a post on its website. 

Continue Reading

Elon Musk

Elon Musk’s xAI closes upsized $20B Series E funding round

xAI announced the investment round in a post on its official website. 

Published

on

xAI-supercomputer-memphis-environment-pushback
Credit: xAI

xAI has closed an upsized $20 billion Series E funding round, exceeding the initial $15 billion target to fuel rapid infrastructure scaling and AI product development. 

xAI announced the investment round in a post on its official website. 

A $20 billion Series E round

As noted by the artificial intelligence startup in its post, the Series E funding round attracted a diverse group of investors, including Valor Equity Partners, Stepstone Group, Fidelity Management & Research Company, Qatar Investment Authority, MGX, and Baron Capital Group, among others. 

Strategic partners NVIDIA and Cisco Investments also continued support for building the world’s largest GPU clusters.

As xAI stated, “This financing will accelerate our world-leading infrastructure buildout, enable the rapid development and deployment of transformative AI products reaching billions of users, and fuel groundbreaking research advancing xAI’s core mission: Understanding the Universe.”

Advertisement
-->

xAI’s core mission

Th Series E funding builds on xAI’s previous rounds, powering Grok advancements and massive compute expansions like the Memphis supercluster. The upsized demand reflects growing recognition of xAI’s potential in frontier AI.

xAI also highlighted several of its breakthroughs in 2025, from the buildout of Colossus I and II, which ended with over 1 million H100 GPU equivalents, and the rollout of the Grok 4 Series, Grok Voice, and Grok Imagine, among others. The company also confirmed that work is already underway to train the flagship large language model’s next iteration, Grok 5. 

“Looking ahead, Grok 5 is currently in training, and we are focused on launching innovative new consumer and enterprise products that harness the power of Grok, Colossus, and 𝕏 to transform how we live, work, and play,” xAI wrote. 

Continue Reading