Connect with us

News

How SpaceX is able to achieve its amazing rocket landing accuracy

Published

on

After SpaceX’s successful and uniquely exciting launch of Taiwan’s Formosat-5 remote sensing satellite, Elon Musk took to Twitter to reveal some fascinating details about the launch and recovery of the Falcon 9 first stage.

Unabashedly technical, the details Musk revealed demonstrate the truly incredible accuracy of Falcon 9’s recovery, honed over 20 landing attempts and numerous modifications to the launch vehicle. The accuracy is best understood within the context of Falcon 9’s scale and the general scope of orbital rocketry.

The first stage of Falcon 9 Full Thrust, currently the active version of Falcon 9, stands 140 feet tall and 12 feet in diameter. If you can, for a moment, picture a 737 airliner, the plane most people have likely flown aboard on domestic flights. The first stage of Falcon 9 is the same length or greater and the same diameter as Boeing’s workhorse airliner. If you are now imagining a 737 landing on its tail aboard an ocean-going barge, that is a great start. The most common version of the 737, the -800, has an empty weight of 91,000 lb, while Falcon 9’s empty first stage is a bit more than half as heavy. With a full load of fuel, Falcon 9 S1 (first stage) weighs nearly three times as much as the 737-800. A single Merlin 1D engine out of Falcon 9’s namesake nine rocket engines has nearly ten times the thrust of the airliner. In short, Falcon 9’s first stage is massive, both extremely light and extremely heavy, and has a mind-boggling amount of thrust.

Advertisement
-->

Falcon 9’s ability to land as accurately as it does is due to a combination of multiple technologies and vehicle modifications. Most visible are S1’s cold gas maneuvering thrusters and aluminum or titanium grid fins, both of which are designed to provide some level of control authority and maneuverability to the first stage during its trip within and without Earth’s atmosphere. At the peak of its trips, the first stage is often completely outside of the vast majority of the atmosphere, meaning that aerodynamic forces are no longer relevant or useful for the vehicle. This is where the cold gas thrusters come in: by carrying their reaction mass with them (the gas), Falcon 9 can maneuver outside of the atmosphere. Once the stage descends into thicker atmospheric conditions, the grid fins deploy and are used like wings to guide the stage down to its landing location, be that on land or at sea. While the gas thrusters lose a lot of their utility once in the atmosphere, they can still be used to add a small amount of control authority when needed. They were famously seen fighting a futile battle to save a first stage aboard OCISLY in 2015.

With this in mind, we can take a closer look at Musk’s technical details. First off, we have a photo of the landed booster, Falcon 9 1038, clearly almost dead center on the droneship Just Read The Instructions. More specifically, Musk reports that 1038 landed less than a single meter off the center of the target, and it landed with less than a single meter per second of latent velocity. The first stage thus managed both a soft and deadly accurate landing after traveling to a height of 150 miles – well into what is technically “space” – at a maximum speed of 1.5 miles per second. Without delving further into the details, this is best summarized as “insanely fast”, and is a bit faster than the X-15 rocketplane’s fastest recorded speed. To better put this into context, Falcon 9 1038 traveled to an altitude of 240,000 meters at a top speed of 2,400 meters per second, turned around, and landed on an autonomous barge about two feet off of its optimal target. It is truly difficult to describe how impressive that kind of accuracy is.

The hypersonic X-15 and Falcon 9 S1, with a 737-800 on the right. All vehicles are to scale. (Wikipedia, SpaceX)

Mr. Musk nevertheless did not let 1038 steal all the fanfare, and revealed that the first stage responsible for launching BulgariaSat-1, 1029, had the honor of being the fastest first stage yet, clocking in at at a truly staggering Mach 7.9, or 2,700 meters per second. That speedy mission marked the stage’s second flight and was SpaceX’s second successful reuse of a Falcon 9. Indicative of the intense speed and heat the core experienced, one of the vehicle’s grid fins was noted to have almost completely melted through. Aluminum’s melting point begins at 1,221°F.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla hints at Starlink integration with recent patent

“By employing polymer blends, some examples enable RF transmission from all the modules to satellites and other communication devices both inside and outside the vehicle.”

Published

on

Credit: Grok

Tesla hinted at a potential Starlink internet terminal integration within its vehicles in a recent patent, which describes a vehicle roof assembly with integrated radio frequency (RF) transparency.

The patent, which is Pub. No U.S. 2025/0368267 describes a new vehicle roof that is made of RF-transparent polymer materials, allowing and “facilitating clear communication with external devices and satellites.”

Tesla believes that a new vehicle roof design, comprised of different materials than the standard metallic or glass elements used in cars today, would allow the company to integrate modern vehicular technologies, “particularly those requiring radio frequency transmission and reception.

Instead of glass or metallic materials, Tesla says vehicles may benefit from high-strength polymer blends, such as Polycarbonate, Acrylonitrile Butadiene Styrene, or Acrylonitrile Styrene Acrylate.

These materials still provide ideal strength metrics for crashworthiness, stiffness for noise, vibration, and harshness control, and are compliant with head impact regulations.

They would also enable better performance with modern technologies, like internet terminals, which need an uninterrupted signal to satellites for maximum reception. Tesla writes in the patent:

Advertisement
-->

“By employing polymer blends, some examples enable RF transmission from all the modules to satellites and other communication devices both inside and outside the vehicle.”

One of the challenges Tesla seems to be aware of with this type of roof design is the fact that it will still have to enable safety and keep that at the forefront of the design. As you can see in the illustration above, Tesla plans to use four layers to increase safety and rigidity, while also combating noise and vibration.

It notes in the patent that disclosed examples still meet the safety requirements outlined in the Federal Motor Vehicle Safety Standards (FMVSS).

Starlink integrated directly into Tesla vehicles would be a considerable advantage for owners. It would come with a handful of distinct advantages.

Initially, the inclusion of Starlink would completely eliminate cellular dead zones, something that is an issue, especially in rural areas. Starlink would provide connectivity in these remote regions and would ensure uninterrupted service during road trips and off-grid adventures.

Advertisement
-->

It could also be a critical addition for Robotaxi, as it is crucial to have solid and reliable connectivity for remote monitoring and fleet management.

Starlink’s growing constellation, thanks to SpaceX’s routine and frequent launch schedule, will provide secure, stable, and reliable internet connectivity for Tesla vehicles.

SpaceX reaches incredible milestone with Starlink program

Although many owners have already mounted Starlink Mini dishes under their glass roofs for a similar experience, it may be integrated directly into Teslas in the coming years, either as an upgrade or a standard feature.

Advertisement
-->
Continue Reading

News

Tesla supplements Holiday Update by sneaking in new Full Self-Driving version

It seems Tesla was waiting for the Hardware 4 rollout, as it wanted to also deploy a new Full Self-Driving version to those owners, as it appeared in the release notes for the Holiday Update last night.

Published

on

Credit: Tesla

Tesla has surprised some owners by sneaking in a new Full Self-Driving version with the wide release of the Holiday Update, which started rolling out to Hardware 4 owners on Friday night.

Tesla has issued a controlled and very slow release pattern with the Holiday Update, which rolls out with Software Version 2025.44.25.5.

For the past two weeks, as it has rolled out to Hardware 3 and older Tesla owners, the company has kept its deployment of the new Software Version relatively controlled.

It seems Tesla was waiting for the Hardware 4 rollout, as it wanted to also deploy a new Full Self-Driving version to those owners, as it appeared in the release notes for the Holiday Update last night.

Tesla Full Self-Driving v14.2.1.25 made its first appearance last night to Hardware 4 owners who are members of the Early Access Program (EAP). It appears to be a slight refinement from FSD v14.2.1, which has been out for a couple of weeks.

Advertisement
-->

Many owners welcome the new FSD version, us included, because we’ve been less than impressed with v14.2.1. We have experienced some minor regressions with v14.2.1, especially with Speed Limit recognition, Speed Profile tinkering, and parking performance.

As it stands, Full Self-Driving is still particularly impressive, but Tesla is evidently having an issue with some of the adjustments, as it is still refining some of the performance aspects of the suite. This is expected and normal with some updates, as not all of them are an improvement in all areas; we routinely see some things backtrack every once in a while.

Advertisement
-->

This new FSD version is likely to take care of those things, but it also includes all of the awesome Holiday Update features, which include:

  • Grok with Navigation Commands (Beta) – Grok will now add and edit destinations.
  • Tesla Photobooth – Take pictures inside your car using the cabin-facing camera
  • Dog Mode Live Activity – Check on your four-legged friend on your phone through periodic snapshots taken of the cabin
  • Dashcam Viewer Update – Includes new metrics, like steering wheel angle, speed, and more
  • Santa Mode – New graphics, trees, and a lock chime
  • Light Show Update – Addition of Jingle Rush light show
  • Custom Wraps and License Plates – Colorizer now allows you to customize your vehicle even further, with custom patterns, license plates, and tint
  • Navigation Improvements – Easier layout and setup
  • Supercharger Site Map – Starting at 18 pilot locations, a 3D view of the Supercharger you’re visiting will be available
  • Automatic Carpool Lane Routing – Navigation will utilize carpool lanes if enabled
  • Phone Left Behind Chime – Your car will now tell you if you left a phone inside
  • Charge Limit Per Location – Set a charge limit for each location
  • ISS Docking Simulator –  New game
  • Additional Improvements – Turn off wireless charging pad, Spotify improvements, Rainbow Rave Cave, Lock Sound TRON addition

Tesla also added two other things that were undocumented, like Charging Passport and information on USB drive storage to help with Dashcam.

Continue Reading

Cybertruck

Tesla updates Cybertruck owners about key Powershare feature

Published

on

Credit: Tesla

Tesla is updating Cybertruck owners on its timeline of a massive feature that has yet to ship: Powershare with Powerwall.

Powershare is a bidirectional charging feature exclusive to Cybertruck, which allows the vehicle’s battery to act as a portable power source for homes, appliances, tools, other EVs, and more. It was announced in late 2023 as part of Tesla’s push into vehicle-to-everything energy sharing, and acting as a giant portable charger is the main advantage, as it can provide backup power during outages.

Cybertruck’s Powershare system supports both vehicle-to-load (V2L) and vehicle-to-home (V2H), making it flexible and well-rounded for a variety of applications.

However, even though the feature was promised with Cybertruck, it has yet to be shipped to vehicles. Tesla communicated with owners through email recently regarding Powershare with Powerwall, which essentially has the pickup act as an extended battery.

Powerwall discharge would be prioritized before tapping into the truck’s larger pack.

Advertisement
-->

However, Tesla is still working on getting the feature out to owners, an email said:

“We’re writing to let you know that the Powershare with Powerwall feature is still in development and is now scheduled for release in mid-2026. 

This new release date gives us additional time to design and test this feature, ensuring its ability to communicate and optimize energy sharing between your vehicle and many configurations and generations of Powerwall. We are also using this time to develop additional Powershare features that will help us continue to accelerate the world’s transition to sustainable energy.”

Owners have expressed some real disappointment in Tesla’s continuous delays in releasing the feature, as it was expected to be released by late 2024, but now has been pushed back several times to mid-2026, according to the email.

Foundation Series Cybertruck buyers paid extra, expecting the feature to be rolled out with their vehicle upon pickup.

Advertisement
-->

Cybertruck’s Lead Engineer, Wes Morrill, even commented on the holdup:

He said that “it turned out to be much harder than anticipated to make powershare work seamlessly with existing Powerwalls through existing wall connectors. Two grid-forming devices need to negotiate who will form and who will follow, depending on the state of charge of each, and they need to do this without a network and through multiple generations of hardware, and test and validate this process through rigorous certifications to ensure grid safety.”

Advertisement
-->

It’s nice to see the transparency, but it is justified for some Cybertruck owners to feel like they’ve been bait-and-switched.

Continue Reading