News
How SpaceX Falcon Heavy undercuts its competition three-fold
Following the stunningly successful debut of SpaceX’s giant Falcon Heavy rocket, the spaceflight fan community and industry have been abuzz with attempts to estimate Falcon Heavy’s true price as an expendable or partially expendable launch vehicle. Thankfully, CEO Elon Musk appears to have been interested enough to fill in the knowledge gaps concerning the rocket’s full range of prices and took to Twitter to answer several questions.
Among several other intriguing comments that I will cover later on, Musk revealed that a fully expendable Falcon Heavy would cost approximately $150 million, while a partially expendable FH would sport 90% of the performance while expending the center stage and landing the side boosters at sea rather than on land. In that latter mode of operation, a Falcon Heavy launch would cost about $95 million, whereas unlocking the final 10% of performance with a fully expandable configuration would be priced around $150 million. While $90-150 million is undeniably a huge amount of cash in any sense, Falcon Heavy delivers far more performance for multiple times less than the available competition.
- ULA’s Delta IV Heavy rolls out to the pad for a launch in 2016. Note the people in the bottom left for a sense of scale. (ULA)
- ULA’s Delta IV Heavy rolls out to the pad for a launch in 2016. Note the people in the bottom left for a sense of scale. (ULA)
- The fully-integrated Falcon Heavy rolls out to Pad 39A. For vertical integration, think of this… but vertical. (SpaceX)
- DIVH and FH are approximately the same size, although FH is far denser. (SpaceX)
The only real competition for Falcon Heavy is the United Launch Alliance’s (ULA) Delta IV Heavy rocket, a triple-core launch vehicle with nine total launches under its belt since its 2004 debut. Aside from one test launch for NASA, all of DIVH’s operational flights have been tasked with launching uniquely heavy military payloads to uniquely high orbits – both of which require an exceptionally capable rocket. Designed as a fully expendable vehicle, ULA’s Heavy is capable of launching ~29,000 kg to low Earth orbit (LEO) and ~14,000 kg to geostationary transfer orbit (GTO), whereas the fully reusable Falcon Heavy has a max payload of about 23,000 kg to LEO and 8,000 kg to GTO.
However, if Musk’s claim of 10% performance loss as a partially expendable launcher holds true, the story changes quite a bit. In its fully expendable configuration (call it the Delta IV Heavy config), Falcon Heavy is a beast of a rocket, quoted at ~64,000 kg to LEO and 26,700 kg to GTO. Subtract 10-25%, and Falcon Heavy still trounces the Delta rocket, all while costing well under $150 million, and probably closer to $100 million. According to a late-2017 report from the US Government Accountability Office, Delta IV Heavy costs as much as $400 million per launch, although ULA CEO Tory Bruno responded to Musk’s claim of $400-600 million earlier this morning with a figure of $350 million for the rocket.
Hey @elonmusk , congrats again your heavy launch. Clarification: Delta IV Heavy goes for about $350M. That’s current and future, after the retirement of both Delta IV Medium and Delta II. She also brings unique capabilities, At least until we bring Vulcan on line.
— Tory Bruno (@torybruno) February 12, 2018
Such a high price is not exceptionally surprising, if only for the fact that Delta IV Heavy launches as infrequently as it does. With an average cadence of one launch every 18 months or 1.5 years, the technical expertise and facilities required to design, build, and operate the DIVH must remain employed regardless of whether the rocket launches. Although Delta was previously a family of rockets, thus enabling some of its designers and builders to cross-populate, the final non-Heavy Delta launch occurred just a handful of weeks ago. Short of layoffs, this means that ULA’s Delta expertise are now solely working to build and operate a rocket with approximately seven launches scheduled between 2018 and 2023 – in short, $400 million is quite plausibly on the low end of the rocket’s actual cost, backend included. Both ULA and the Department of Defense are aware, however, that Delta IV Heavy is the only rocket currently capable of launching some of the missions desired and required by the National Reconnaissance Office (NRO), and are thus at least partially willing to swallow the vehicle’s high cost. SpaceX’s Falcon Heavy is bound to introduce some much-needed competition into the stagnant market after its highly successful introduction, but it will likely be a year or more before the new rocket is certified to launch the same highly sensitive and expensive payloads as ULA’s Delta IV Heavy.
How are SpaceX’s prices so low?
Still, this does not answer the “how” of SpaceX’s prices. What can even begin to explain Delta IV Heavy’s 200-400% premium over Falcon Heavy? The best answer to this crucial question was by no coincidence also one of the main reasons that Elon Musk created SpaceX. From the very beginning, SpaceX pursued a slim and flexible organizational structure, prioritized hiring brilliant and motivated engineers with hands-on experience, and encouraged the practice of thinking from first principles. Dolly Singh, head of SpaceX’s talent acquisition in the mid-2000s, described the rocket startup’s atmosphere like so:
We searched for candidates with a proven history of building and breaking things…candidates who had been tinkering with hardware systems for years…I knew the people who filled my open positions would be put to the test every day and would be asked to meet heretofore impossible targets. We looked for people with a history of defeating the odds, who had made careers of overcoming obstacles.
https://www.instagram.com/p/BVarZZSgfIP/
Birds of an organizational feather
In essence, this organizational philosophy has led SpaceX to become vertically integrated to the extent that is effective without comparison in the global aerospace industry. Vertical integration is a term used to describe the practice of bringing aspects of development and manufacturing in-house, whereas a company not attempting to integrate vertically would instead contract and subcontract out their design and manufacturing needs wherever possible. Musk is hard set on this philosophy: if SpaceX can do it in-house more cheaply than a contractor, they will become their own supplier. Companies like ULA – a cooperation between Lockheed Martin and Boeing – have the better part of a century of experience as heavyweights in the US military-industrial complex, a relationship that has quite literally changed processes of acquisition and created alternate realities of pricing.
Thick with armies of lobbyists, those military-industrial complex titans have help to direct the US down a path that has solidified truly insane concepts as the status quo. A cost-plus contracting framework almost universally applied in the procurement of military technology means that companies are nearly awarded for delays and cost overruns. Possibly even more absurd, the euphemistic strategy of “concurrency” espoused by those same titans has somehow convinced the upper echelons of US defense procurement that it is a good and preferable strategy to fully fund and build technologies en mass before any testing has been. Unsurprisingly, these two philosophies have led to years of delays and huge cost overruns as contractors and their subcontractors are forced to repair or modify extremely complex technological systems once bugs and problems are inevitably discovered down the road. The F-35 Lightning II – developed by Lockheed Martin – is perhaps the most famous example with near-weekly tales of abject failure – gun systems that are years late and inaccurate to the point of uselessness, extremely buggy and flawed software that the jet literally cannot function without, an oxygen system that frequently gives its pilots hypoxia and grounds the entire F-35 fleet, among dozens of other incredible missteps – and all for the most expensive fighter aircraft yet developed in the US. Tyler Rogoway, one of the best practicing defense journalists, has covered the debacle of concurrency and cost-plus contracting for many years and is a recommended read for anyone interested in the above industries.
- While it may look damn cool, the F-35 is easily the biggest government procurement debacle in all of human history. (Lockheed Martin)
- Operated by the same company responsible for the F-35, Atlas 5 is a highly reliable and equally expensive rocket. (ULA)
Now, back to spaceflight…
Parting from this partial diversion, the purpose of this brief history of military procurement is to provide some level of context as to why NASA and its spaceflight contractors act as they do, where they derived their organizational structures and philosophies, and why SpaceX is different.
Famously, a NASA study in 2010 estimated the cost of SpaceX’s Falcon 9 development to be approximately $4 billion under variables representative of NASA’s own R&D and engineering culture, or $1.7 billion using a more commercial, fixed-cost strategy. When SpaceX offered to cooperate with the addition of their internal data on Falcon 9’s cost, the same model’s estimate plummeted to less than $600 million, representing a truly extraordinary overestimate of SpaceX’s development costs, while SpaceX’s data showed approximately $300 million of investment in the first version of Falcon 9. Simply put, NASA’s cost estimates were off by more than an order of magnitude (PDF) – SpaceX successfully developed an unprecedented orbital-class rocket for mere pennies to NASA’s dollar.
Famously, a NASA study in 2010 estimated the cost of SpaceX’s Falcon 9 development to be approximately $4 billion, while SpaceX’s own data showed approximately $300 million of investment in the first version of Falcon 9. Simply put, NASA’s cost estimates were off by more than an order of magnitude.
More recently, Elon Musk has stated that SpaceX invested $1 billion or more in the development of reusability for Falcon 9, and this large investment can almost entirely explain why Falcon 9’s pricing has remained essentially unchanged over its seven years of life, even if it was already the cheapest rocket in its performance class. Despite the recent introduction and rapid routinization of operational reuse, SpaceX has not publicly changed the launch price from its $62 million base. Although there have been slight acknowledgments of small discounts from customers flying on reused boosters, the general theme is that reused rockets have not meaningfully lowered the cost of purchasing a launch. In practice, the cost of refurbishment and reuse of the first several Falcon 9 boosters was likely on par with the cost of a new booster, but the real reason for the lack of magnitudes of cost reduction lies in SpaceX’s desire to recoup some or all of the capital it invested in reusability. As the company matures its reuse expertise, the cost can be expected to plummet – Cargo Dragon’s reuse, for example, reportedly saved SpaceX 50% of the cost of a new capsule, and Falcon 9 is almost certainly far easier and thus cheaper to refurbish and refly.
The quote is from a 2015 hearing held by the Armed Services Committee: "I don't know how to build a $400 million rocket. Rather than ask how am I less expensive than ULA, I don't understand how ULA is as expensive as they are."
— Robin Seemangal (@nova_road) February 12, 2018
While payload fairings have turned out to be harder to recover than anticipated and Falcon 9’s second stage is likely to remain expendable for the foreseeable future, those components only comprise about 30% of the rocket’s price. If SpaceX can cut the cost of reuse to maybe 10-20% of the cost of a new booster, the remaining 30-60% of a new launch’s $62 million translates to approximately $20-35 million of profit for each reused launch. If, say, the company aims to fly flight-proven boosters on half of their launches in 2018, that translates into as many as 15 launches and as much as $500 million – or half of the $1 billion investment – recouped in a single year. With the introduction of Falcon 9 Block 5 in a few months, SpaceX will soon be flying an iteration of their workhorse rocket that is far faster, easier, and cost-effective to reuse. Ultimately, depending on how much of their initial investment SpaceX intends to recover, the huge profit margins they can derive from reuse could be redirected to drastic price cuts for the customer. More realistically, the company will likely lower its prices enough to ensure that their launch business is brutally competitive, and thus use those profit margins to begin heavily investing in BFR (Big F. Rocket), BFS (Big F. Spaceship), and the company’s loftier interplanetary goals more generally.
- Starship and a Martian city, circa 2017. (SpaceX)
- SpaceX’s 2017 BFS (now Starship) delivers cargo to a large lunar base. (SpaceX)
In fact, given that SpaceX President Gwynne Shotwell has quite consistently targeted early 2019 for the beginning of prototype BFS testing, SpaceX is probably already putting a significant proportion of their profits into Mars-focused R&D. As 2018 progresses, barring any unseen speed bumps, the funds available to SpaceX are bound to explode, and huge progress will likely begin to be made on actual hardware intended to enable colonies on the Moon and Mars.
Follow along live as launch photographer Tom Cross and I cover these exciting proceedings as close to live as possible.
Teslarati – Instagram – Twitter
Tom Cross – Twitter
Eric Ralph – Twitter
News
Tesla China hires Autopilot Test Engineer amid continued FSD rollout preparations
The role is based in Lingang, the district that houses Gigafactory Shanghai.
Tesla is hiring an Autopilot Test Engineer in Shanghai, a move that signals continued groundwork for the validation of Full Self-Driving (FSD) in China. The role is based in Lingang, the district that houses Gigafactory Shanghai and has become a key testing zone for advanced autonomous features.
As observed by Tesla watchers, local authorities in Shanghai’s Nanhui New City within Lingang have previously authorized a fleet of Teslas to run advanced driving tests on public roads. This marked one of the first instances where foreign automakers were permitted to test autonomous driving systems under real traffic conditions in China.
Tesla’s hiring efforts come amid ongoing groundwork for a full FSD rollout in China. Earlier reporting noted that Tesla China has been actively preparing the regulatory and infrastructure foundation needed for full FSD deployment, even though the company has not yet announced a firm launch date for the feature in the market.
As per recent comments from Tesla China Vice President Grace Tao, the electric vehicle maker has been busy setting up the necessary facilities to support FSD’s full rollout in the country. In a comment to local media, Tao stated that FSD should demonstrate a level of performance that could surpass human drivers once it is fully rolled out.
“We have set up a local training center in China specifically to handle this adaptation,” Tao said. “Once officially released, it will demonstrate a level of performance that is no less than, and may even surpass, that of local drivers.”
Tesla CEO Elon Musk has been quite bullish about a potential FSD rollout in China. During the 2025 Annual Shareholder Meeting, Musk emphasized that FSD had only received “partial approval” in China, though full authorization could potentially arrive around February or March 2026. This timeline was reiterated by the CEO during his appearance at the World Economic Forum in Davos.
Elon Musk
Tesla Model Y outsells all EV rivals in Europe in 2025 despite headwinds
The result highlights the Model Y’s continued strength in the region.
The Tesla Model Y was Europe’s most popular electric car in 2025, leading all EV models by a wide margin despite a year marked by production transition, intensifying competition, and anti-Elon Musk sentiments.
The result highlights the Model Y’s continued strength in the region even as Volkswagen overtook Tesla as the top-selling EV brand overall.
As per data compiled by JATO Dynamics and reported by Swedish outlet Allt om Elbil, the Tesla Model Y recorded 149,805 registrations across Europe in 2025. That figure placed it comfortably at No. 1 among all electric car models in the region.
The Model Y’s performance in Europe is particularly notable given that registrations declined 28% year-over-year. The dip coincided with Tesla’s Q1 2025 transition to the updated Model Y, a changeover that temporarily affected output and deliveries in several markets. Anti-Elon Musk sentiments also spread across several European countries amidst the CEO’s work with U.S. President Donald Trump.
Even with these disruptions, the Model Y outsold its nearest rival by more than 50,000 units. Second place went to the newly launched Skoda Elroq with 93,870 registrations, followed by the Tesla Model 3 at 85,393 units. The Model 3 also recorded a 24% year-over-year decline. Renault’s new electric Renault 5 placed fourth with 85,101 registrations.
Other top performers included the Volkswagen ID.4, ID.3, and ID.7, along with the BMW iX1 and Kia EV3, many of which posted triple-digit growth from partial-year launches in 2024.
While the Model Y dominated individual model rankings, Volkswagen overtook Tesla as Europe’s top EV brand in 2025. Volkswagen delivered 274,278 electric cars in the region, a 56% increase compared to 2024. Much of that growth was driven by the Volkswagen ID.7. Tesla, by contrast, sold 236,357 electric vehicles in Europe, representing a 27% year-over-year decline.
JATO Dynamics noted that “Tesla’s small and aging model range faces fierce competition in Europe, both from traditional European automakers and a growing number of Chinese competitors.”
Despite intensifying competition and brand-level shifts, however. the Model Y’s commanding lead demonstrates that Tesla’s bestselling crossover remains a dominant force in Europe’s fast-evolving EV landscape.
News
Starlink gets its latest airline adoptee for stable and reliable internet access
The company said it plans to “rapidly integrate Starlink into its fleet,” and that the first Starlink-equipped aircraft will enter service this Summer.
SpaceX’s Starlink, the satellite internet program launched by Elon Musk’s company, has gotten its latest airline adoptee, offering stable and reliable internet to passengers.
Southwest Airlines announced on Wednesday that it would enable Starlink on its aircraft, a new strategy that will expand to more than 300 planes by the end of the year.
The company said it plans to “rapidly integrate Starlink into its fleet,” and that the first Starlink-equipped aircraft will enter service this Summer.
Tony Roach, Executive Vice President, Chief Customer and Brand Officer for the airline, said:
“Free WiFi has been a huge hit with our Rapid Rewards Members, and we know our Customers expect seamless connectivity across all their devices when they travel. Starlink delivers that at-home experience in the air, giving Customers the ability to stream their favorite shows from any platform, watch live sports, download music, play games, work, and connect with loved ones from takeoff to landing.”
Southwest also said that this is just one of the latest upgrades it is making to provide a more well-rounded experience to its aircraft. In addition to Starlink, it is updating cabin designs, offering more legroom, and installing in-seat power to all passengers.
Southwest became one of several airlines to cross over to Starlink, as reviews for the internet provider have raved about reliability and speed. Over the past year, Hawaiian Airlines, United Airlines, Alaska Airlines, airBaltic, Air France, JSX, Emirates, British Airways, and others have all decided to install Starlink on their planes.
This has been a major move away from unpredictable and commonly unreliable WiFi offerings on planes. Starlink has been more reliable and has provided more stable connections for those using their travel time for leisure or business.
Jason Fritch, VP of Starlink Enterprise Sales at SpaceX, said:
“We’re thrilled to deliver a connectivity experience to Southwest Airlines and its Customers that really is similar, if not better, than what you can experience in your own home. Starlink is the future of connected travel, making every journey faster, smoother, and infinitely more enjoyable.”
Starlink recently crossed a massive milestone of over 10 million subscribers.







