Connect with us
Including Falcon Heavy's two side boosters, SpaceX has successfully completed an array of land-based recoveries in the last four months, but not a single landing on a drone ship. (SpaceX) Including Falcon Heavy's two side boosters, SpaceX has successfully completed an array of land-based recoveries in the last four months, but not a single landing on a drone ship. (SpaceX)

News

How SpaceX Falcon Heavy undercuts its competition three-fold

Published

on

Following the stunningly successful debut of SpaceX’s giant Falcon Heavy rocket, the spaceflight fan community and industry have been abuzz with attempts to estimate Falcon Heavy’s true price as an expendable or partially expendable launch vehicle. Thankfully, CEO Elon Musk appears to have been interested enough to fill in the knowledge gaps concerning the rocket’s full range of prices and took to Twitter to answer several questions.

Among several other intriguing comments that I will cover later on, Musk revealed that a fully expendable Falcon Heavy would cost approximately $150 million, while a partially expendable FH would sport 90% of the performance while expending the center stage and landing the side boosters at sea rather than on land. In that latter mode of operation, a Falcon Heavy launch would cost about $95 million, whereas unlocking the final 10% of performance with a fully expandable configuration would be priced around $150 million. While $90-150 million is undeniably a huge amount of cash in any sense, Falcon Heavy delivers far more performance for multiple times less than the available competition.

The only real competition for Falcon Heavy is the United Launch Alliance’s (ULA) Delta IV Heavy rocket, a triple-core launch vehicle with nine total launches under its belt since its 2004 debut. Aside from one test launch for NASA, all of DIVH’s operational flights have been tasked with launching uniquely heavy military payloads to uniquely high orbits – both of which require an exceptionally capable rocket. Designed as a fully expendable vehicle, ULA’s Heavy is capable of launching ~29,000 kg to low Earth orbit (LEO) and ~14,000 kg to geostationary transfer orbit (GTO), whereas the fully reusable Falcon Heavy has a max payload of about 23,000 kg to LEO and 8,000 kg to GTO.

However, if Musk’s claim of 10% performance loss as a partially expendable launcher holds true, the story changes quite a bit. In its fully expendable configuration (call it the Delta IV Heavy config), Falcon Heavy is a beast of a rocket, quoted at ~64,000 kg to LEO and 26,700 kg to GTO. Subtract 10-25%, and Falcon Heavy still trounces the Delta rocket, all while costing well under $150 million, and probably closer to $100 million. According to a late-2017 report from the US Government Accountability Office, Delta IV Heavy costs as much as $400 million per launch, although ULA CEO Tory Bruno responded to Musk’s claim of $400-600 million earlier this morning with a figure of $350 million for the rocket.

Such a high price is not exceptionally surprising, if only for the fact that Delta IV Heavy launches as infrequently as it does. With an average cadence of one launch every 18 months or 1.5 years, the technical expertise and facilities required to design, build, and operate the DIVH must remain employed regardless of whether the rocket launches. Although Delta was previously a family of rockets, thus enabling some of its designers and builders to cross-populate, the final non-Heavy Delta launch occurred just a handful of weeks ago. Short of layoffs, this means that ULA’s Delta expertise are now solely working to build and operate a rocket with approximately seven launches scheduled between 2018 and 2023 – in short, $400 million is quite plausibly on the low end of the rocket’s actual cost, backend included. Both ULA and the Department of Defense are aware, however, that Delta IV Heavy is the only rocket currently capable of launching some of the missions desired and required by the National Reconnaissance Office (NRO), and are thus at least partially willing to swallow the vehicle’s high cost. SpaceX’s Falcon Heavy is bound to introduce some much-needed competition into the stagnant market after its highly successful introduction, but it will likely be a year or more before the new rocket is certified to launch the same highly sensitive and expensive payloads as ULA’s Delta IV Heavy.

How are SpaceX’s prices so low?

Still, this does not answer the “how” of SpaceX’s prices. What can even begin to explain Delta IV Heavy’s 200-400% premium over Falcon Heavy? The best answer to this crucial question was by no coincidence also one of the main reasons that Elon Musk created SpaceX. From the very beginning, SpaceX pursued a slim and flexible organizational structure, prioritized hiring brilliant and motivated engineers with hands-on experience, and encouraged the practice of thinking from first principles. Dolly Singh, head of SpaceX’s talent acquisition in the mid-2000s, described the rocket startup’s atmosphere like so:

We searched for candidates with a proven history of building and breaking things…candidates who had been tinkering with hardware systems for years…I knew the people who filled my open positions would be put to the test every day and would be asked to meet heretofore impossible targets. We looked for people with a history of defeating the odds, who had made careers of overcoming obstacles.

https://www.instagram.com/p/BVarZZSgfIP/

Advertisement

Birds of an organizational feather

In essence, this organizational philosophy has led SpaceX to become vertically integrated to the extent that is effective without comparison in the global aerospace industry. Vertical integration is a term used to describe the practice of bringing aspects of development and manufacturing in-house, whereas a company not attempting to integrate vertically would instead contract and subcontract out their design and manufacturing needs wherever possible. Musk is hard set on this philosophy: if SpaceX can do it in-house more cheaply than a contractor, they will become their own supplier. Companies like ULA – a cooperation between Lockheed Martin and Boeing – have the better part of a century of experience as heavyweights in the US military-industrial complex, a relationship that has quite literally changed processes of acquisition and created alternate realities of pricing.

Thick with armies of lobbyists, those military-industrial complex titans have help to direct the US down a path that has solidified truly insane concepts as the status quo. A cost-plus contracting framework almost universally applied in the procurement of military technology means that companies are nearly awarded for delays and cost overruns. Possibly even more absurd, the euphemistic strategy of “concurrency” espoused by those same titans has somehow convinced the upper echelons of US defense procurement that it is a good and preferable strategy to fully fund and build technologies en mass before any testing has been. Unsurprisingly, these two philosophies have led to years of delays and huge cost overruns as contractors and their subcontractors are forced to repair or modify extremely complex technological systems once bugs and problems are inevitably discovered down the road. The F-35 Lightning II – developed by Lockheed Martin – is perhaps the most famous example with near-weekly tales of abject failure – gun systems that are years late and inaccurate to the point of uselessness, extremely buggy and flawed software that the jet literally cannot function without, an oxygen system that frequently gives its pilots hypoxia and grounds the entire F-35 fleet, among dozens of other incredible missteps – and all for the most expensive fighter aircraft yet developed in the US. Tyler Rogoway, one of the best practicing defense journalists, has covered the debacle of concurrency and cost-plus contracting for many years and is a recommended read for anyone interested in the above industries.

Now, back to spaceflight…

Parting from this partial diversion, the purpose of this brief history of military procurement is to provide some level of context as to why NASA and its spaceflight contractors act as they do, where they derived their organizational structures and philosophies, and why SpaceX is different.

Famously, a NASA study in 2010 estimated the cost of SpaceX’s Falcon 9 development to be approximately $4 billion under variables representative of NASA’s own R&D and engineering culture, or $1.7 billion using a more commercial, fixed-cost strategy. When SpaceX offered to cooperate with the addition of their internal data on Falcon 9’s cost, the same model’s estimate plummeted to less than $600 million, representing a truly extraordinary overestimate of SpaceX’s development costs, while SpaceX’s data showed approximately $300 million of investment in the first version of Falcon 9. Simply put, NASA’s cost estimates were off by more than an order of magnitude (PDF) – SpaceX successfully developed an unprecedented orbital-class rocket for mere pennies to NASA’s dollar.

Famously, a NASA study in 2010 estimated the cost of SpaceX’s Falcon 9 development to be approximately $4 billion, while SpaceX’s own data showed approximately $300 million of investment in the first version of Falcon 9. Simply put, NASA’s cost estimates were off by more than an order of magnitude.

More recently, Elon Musk has stated that SpaceX invested $1 billion or more in the development of reusability for Falcon 9, and this large investment can almost entirely explain why Falcon 9’s pricing has remained essentially unchanged over its seven years of life, even if it was already the cheapest rocket in its performance class. Despite the recent introduction and rapid routinization of operational reuse, SpaceX has not publicly changed the launch price from its $62 million base. Although there have been slight acknowledgments of small discounts from customers flying on reused boosters, the general theme is that reused rockets have not meaningfully lowered the cost of purchasing a launch. In practice, the cost of refurbishment and reuse of the first several Falcon 9 boosters was likely on par with the cost of a new booster, but the real reason for the lack of magnitudes of cost reduction lies in SpaceX’s desire to recoup some or all of the capital it invested in reusability. As the company matures its reuse expertise, the cost can be expected to plummet – Cargo Dragon’s reuse, for example, reportedly saved SpaceX 50% of the cost of a new capsule, and Falcon 9 is almost certainly far easier and thus cheaper to refurbish and refly.

Advertisement

While payload fairings have turned out to be harder to recover than anticipated and Falcon 9’s second stage is likely to remain expendable for the foreseeable future, those components only comprise about 30% of the rocket’s price. If SpaceX can cut the cost of reuse to maybe 10-20% of the cost of a new booster, the remaining 30-60% of a new launch’s $62 million translates to approximately $20-35 million of profit for each reused launch. If, say, the company aims to fly flight-proven boosters on half of their launches in 2018, that translates into as many as 15 launches and as much as $500 million – or half of the $1 billion investment – recouped in a single year. With the introduction of Falcon 9 Block 5 in a few months, SpaceX will soon be flying an iteration of their workhorse rocket that is far faster, easier, and cost-effective to reuse. Ultimately, depending on how much of their initial investment SpaceX intends to recover, the huge profit margins they can derive from reuse could be redirected to drastic price cuts for the customer. More realistically, the company will likely lower its prices enough to ensure that their launch business is brutally competitive, and thus use those profit margins to begin heavily investing in BFR (Big F. Rocket), BFS (Big F. Spaceship), and the company’s loftier interplanetary goals more generally.

In fact, given that SpaceX President Gwynne Shotwell has quite consistently targeted early 2019 for the beginning of prototype BFS testing, SpaceX is probably already putting a significant proportion of their profits into Mars-focused R&D. As 2018 progresses, barring any unseen speed bumps, the funds available to SpaceX are bound to explode, and huge progress will likely begin to be made on actual hardware intended to enable colonies on the Moon and Mars.

Follow along live as launch photographer Tom Cross and I cover these exciting proceedings as close to live as possible.

Advertisement

Teslarati   –   Instagram Twitter

Tom CrossTwitter

Eric Ralph Twitter

 

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Cybertruck

Tesla begins wide rollout of Full Self-Driving v14 to Cybertruck

Published

on

Credit: Weibo (via YYDS on X)

Tesla has officially begun the wide rollout of Full Self-Driving (Supervised) v14 to the Cybertruck about a month after the company started rolling it out to other vehicles in the fleet.

On Monday, Tesla officially started rolling out v14.1.5 to Cybertruck owners, the first FSD v14 rollout for owners of the all-electric pickup.

Owners have been anxiously waiting for Tesla to begin the wide release of v14 to Cybertruck, as the company said it would refine the suite for the vehicle.

Tesla has finally started rolling out to many owners, who are reporting that their Cybertrucks are downloading Software Update 2025.38.8.5, which contains FSD v14.1.5:

Tesla has to be more cautious with rolling out FSD on the Cybertruck than on other vehicles for a few reasons. Initially, the Cybertruck utilizes an all-wheel steering system that turns differently than the S3XY lineup. This creates a challenge for the Tesla AI team as they have to cater to this specific maneuvering change.

Additionally, the Cybertruck is much larger, and the exterior cameras responsible for seeing the vehicle’s surroundings are placed differently than those of the other vehicles.

This requires additional calibration to ensure safety.

The full release notes for Full Self-Driving v14.1.5 are as follows:

Advertisement
  • Added Arrival Options for you to select where FSD should park: in a Parking Lot, on the Street, in a Driveway, in a Parking Garage, or at the Curbside.
  • Added handling to pull over or yield for emergency vehicles (e.g. police cars, fire trucks, ambulances).
  • Added navigation and routing into the vision-based neural network for real-time handling of blocked roads and detours.
  • Added additional Speed Profile to further customize driving style preference.
  • Improved handling for static and dynamic gates.
  • Improved offsetting for road debris (e.g. tires, tree branches, boxes).
  • Improve handling of several scenarios including: unprotected turns, lane changes, vehicle cut-ins, and school buses.
  • Improved FSD’s ability to manage system faults and recover smoothly from degraded operation for enhanced reliability.
  • Added alerting for residue build-up on interior windshield that may impact front camera visibility. If affected, visit Service for cleaning!

Continue Reading

News

Elon Musk shuts down Tesla ‘AMG’ division speculation: ‘Focus is autonomy’

“I think it’s best to leave that to the custom shops. Tesla’s focus is autonomous cars, building futuristic autonomous cars. We want the future to look like the future.”

Published

on

Credit: Unplugged Performance

Tesla CEO Elon Musk was asked by Joe Rogan late last week whether the company would ever consider establishing an “AMG division” like Mercedes-Benz has established for powerful, race-inspired vehicles.

However, Musk turned down any talk of that, highlighting that the company is laser-focused on autonomous vehicles, seemingly hinting that any distraction from autonomy would be a detriment to the future.

Rogan drives a Tesla Model S himself, but it is not your run-of-the-mill all-electric sedan. Already outfitted with the Plaid powertrain that Tesla developed, Rogan took his vehicle to Unplugged Performance for a true performance outfitting.

The vehicle is completely overhauled with performance parts and seats. Known as the Model S-APEX, Rogan took delivery of it from Unplugged in January.

Rogan asked Musk on Friday during his most recent appearance on the Joe Rogan Experience podcast whether Tesla would ever establish an “AMG division” that would focus on catering Teslas to performance-based standards.

Advertisement

Musk said:

“I think it’s best to leave that to the custom shops. Tesla’s focus is autonomous cars, building futuristic autonomous cars. We want the future to look like the future.”

Tesla fans have said for years that the company should consider acquiring Unplugged Performance and its Upfit Tesla division, which recently outfitted the Las Vegas Metropolitan Police Department’s fleet of Cybertruck cruisers.

However, it seems Tesla will keep things separate. Musk is primarily focused on autonomy, which will drive the technology forward and drive shareholder growth. Something like an outfitter for performance would be a cool thing for the owners who have the interest and the money.

It’s not a tremendous revenue driver or anything that would contribute to the financial state of the company. Mercedes-Benz, for example, is more accessible for consumers as it sold over 140,000 units from its AMG brand in 2024.

Tesla Model Y driver starts race in reverse, still wins against AMG SUV

Advertisement

It helps with driving revenue higher by as much as 15 percent compared to similar models that are not AMGs. However, would Tesla see this much of a benefit? Likely not, because the Performance trim already caters to many owners.

Continue Reading

Cybertruck

Tesla Cybertruck fleet takes over at SpaceX’s Starbase

Interestingly, the Cybertruck uses the same exterior, a stainless steel alloy, as SpaceX rockets. This synergy between the two companies and their very different products shows a very unified mentality between Musk companies.

Published

on

Credit: @derek1ee | X

Tesla Cybertrucks have taken over at SpaceX’s Starbase facility in Texas, as hundreds of the all-electric pickup trucks were spotted late last week rounding out a massive fleet of vehicles.

The Cybertruck fleet is geared toward replacing gas vehicles that are used at Starbase for everyday operations. The only surprise about this is that it was not done sooner:

Deliveries have been going on for a few weeks, as Cybertrucks have made their way across the state of Texas from Austin to Starbase so they could be included in SpaceX’s fleet of vehicles at the facility.

Advertisement

Interestingly, the Cybertruck uses the same exterior, a stainless steel alloy, as SpaceX rockets. This synergy between the two companies and their very different products shows a very unified mentality between Musk companies.

However, there are some other perspectives to consider as SpaceX is utilizing such a massive fleet of Cybertrucks. Some media outlets (unsurprisingly) are seeing this as a move of weakness by both Tesla and SpaceX, as the aerospace company is, in a sense, “bailing out” lagging sales for the all-electric pickup.

It’s no secret that Tesla has struggled with the Cybertruck this year, and deliveries have been underwhelming in the sense that the company was anticipating between 1 million and 2 million orders for the vehicle before it was widely produced.

A lot of things changed with the Cybertruck between its 2019 unveiling and 2023 initial deliveries, most notably, price.

The price of the Cybertruck swelled significantly and priced out many of those who had pre-ordered it. Some have weighed the option of whether this purchase was a way to get rid of sitting inventory.

Advertisement

However, it seems more logical to consider the fact that SpaceX was likely always going to transition to Teslas for its fleet, especially at Starship, at some point.

It doesn’t seem out of the question that one Musk company would utilize another Musk company’s products, especially considering the Cybertruck has been teased as the vehicle that would be present on Mars.

Continue Reading

Trending