News
NASA awards SpaceX five more Dragon astronaut launch contracts
NASA has finalized plans to purchase another five Crew Dragon launches from SpaceX, securing its astronauts access to the International Space Station (ISS) through 2030.
The award comes three months after NASA issued a notice of intent to purchase five additional missions from SpaceX. The space agency signed a different contract for three more Crew Dragon launches just three months before the latest order, meaning that NASA has now purchased eight new Crew Dragon launches from SpaceX in six months – doubling the spacecraft’s future launch manifest in the process.
August 31st’s order adds Crew missions 10 through 14 to Crew Dragon’s roster and brings its total number of planned operational NASA astronaut launches to 14. NASA says the five extra missions will cost $1.44 billion and raise the total value of SpaceX’s Crew Dragon CCtCap contract to $4.93 billion.
Factoring in a sum of approximately $2.74 billion that funded development and three test launches, NASA will ultimately pay an average of $328 million for each of 15 productive Crew Dragon astronaut launches (including Demo-2, the spacecraft’s first crewed test flight). Assuming four astronauts fly on each operational launch, the average price per astronaut launched through 2030 will be $85 million.
With its latest contract, NASA will beat that average and pay $288 million per launch ($72 million per astronaut). Crew-10 through Crew-14 will likely occur in the late 2020s, meaning that the space agency may be saving even more money than is immediately obvious. Assuming an inflation rate of 2.5% over the next eight years, $288 million today could be worth around $235 million in 2030. SpaceX is not paid until after its services are rendered.

NASA’s decision to award SpaceX eight new Crew Dragon launch contracts in 2022 is a major blow to its second Commercial Crew provider, Boeing, which has received zero additional orders. It also emphasizes just how good of a deal the agency got with SpaceX. Once said to be “well positioned to fly [its] first crew in early 2020,” Boeing’s Starliner crew capsule finally completed its first (mostly) successful uncrewed test flight in May 2022. Boeing and NASA are now working towards February 2023 for the spacecraft’s first crewed test flight, delaying Starliner’s first operational astronaut launch until late 2023 at the earliest.
Starliner still has only six operational launch contracts, which date back to ta guarantee in the original 2014 CCtCap awards that promised 2-6 operational launch contracts per provider. Thanks to NASA’s fixed-price contract with Boeing, the agency won’t have to cover the almost $700 million that years of Starliner delays and a test flight do-over have cost the company to date, but taxpayers will still end up paying a total of $4.49 billion – $748 million per operational Boeing astronaut launch.

Even using iffy Boeing calculus that claims NASA will get five seats of value per launch by adding an extra astronaut or cargo, the space agency would end up paying $150 million per astronaut through 2030. If only four astronauts launch on each Starliner, the average price per seat rises to $187 million.
Unless Boeing is able to find a commercial customer willing to burn tens or hundreds of millions of dollars to avoid launching private astronauts with SpaceX, it may never recoup the losses it has incurred developing Starliner. Worse, without Boeing paying even more out of pocket to certify Starliner to launch on a different rocket, the spacecraft will find itself without a certified rocket after its sixth operational launch.
Meanwhile, on top of eight new NASA contracts, Crew Dragon has already supported two private astronaut launches and SpaceX has contracts for five more private missions through 2024. Put simply, thanks in large part to the void created by Boeing’s surprising shortcomings, SpaceX practically owns the western market for crewed orbital spaceflight and will likely continue to dominate it throughout the 2020s.
News
Elon Musk’s Grok AI to be used in U.S. War Department’s bespoke AI platform
The partnership aims to provide advanced capabilities to 3 million military and civilian personnel.
The U.S. Department of War announced Monday an agreement with Elon Musk’s xAI to embed the company’s frontier artificial intelligence systems, powered by the Grok family of models, into the department’s bespoke AI platform GenAI.mil.
The partnership aims to provide advanced capabilities to 3 million military and civilian personnel, with initial deployment targeted for early 2026 at Impact Level 5 (IL5) for secure handling of Controlled Unclassified Information.
xAI Integration
As noted by the War Department’s press release, GenAI.mil, its bespoke AI platform, will gain xAI for the Government’s suite of tools, which enable real-time global insights from the X platform for “decisive information advantage.” The rollout builds on xAI’s July launch of products for U.S. government customers, including federal, state, local, and national security use cases.
“Targeted for initial deployment in early 2026, this integration will allow all military and civilian personnel to use xAI’s capabilities at Impact Level 5 (IL5), enabling the secure handling of Controlled Unclassified Information (CUI) in daily workflows. Users will also gain access to real‑time global insights from the X platform, providing War Department personnel with a decisive information advantage,” the Department of War wrote in a press release.
Strategic advantages
The deal marks another step in the Department of War’s efforts to use cutting-edge AI in its operations. xAI, for its part, highlighted that its tools can support administrative tasks at the federal, state and local levels, as well as “critical mission use cases” at the front line of military operations.
“The War Department will continue scaling an AI ecosystem built for speed, security, and decision superiority. Newly IL5-certified capabilities will empower every aspect of the Department’s workforce, turning AI into a daily operational asset. This announcement marks another milestone in America’s AI revolution, and the War Department is driving that momentum forward,” the War Department noted.
News
Tesla FSD (Supervised) v14.2.2 starts rolling out
The update focuses on smoother real-world performance, better obstacle awareness, and precise end-of-trip routing, among other improvements.
Tesla has started rolling out Full Self-Driving (Supervised) v14.2.2, bringing further refinements to its most advanced driver-assist system. The new FSD update focuses on smoother real-world performance, better obstacle awareness, and precise end-of-trip routing, among other improvements.
Key FSD v14.2.2 improvements
As noted by Not a Tesla App, FSD v14.2.2 upgrades the vision encoder neural network with higher resolution features, enhancing detection of emergency vehicles, road obstacles, and human gestures. New Arrival Options let users select preferred drop-off styles, such as Parking Lot, Street, Driveway, Parking Garage, or Curbside, with the navigation pin automatically adjusting to the user’s ideal spot for precision.
Other additions include pulling over for emergency vehicles, real-time vision-based detours for blocked roads, improved gate and debris handling, and extreme Speed Profiles for customized driving styles. Reliability gains cover fault recovery, residue alerts on the windshield, and automatic narrow-field camera washing for new 2026 Model Y units.
FSD v14.2.2 also boosts unprotected turns, lane changes, cut-ins, and school bus scenarios, among other things. Tesla also noted that users’ FSD statistics will be saved under Controls > Autopilot, which should help drivers easily view how much they are using FSD in their daily drives.
Key FSD v14.2.2 release notes
Full Self-Driving (Supervised) v14.2.2 includes:
- Upgraded the neural network vision encoder, leveraging higher resolution features to further improve scenarios like handling emergency vehicles, obstacles on the road, and human gestures.
- Added Arrival Options for you to select where FSD should park: in a Parking Lot, on the Street, in a Driveway, in a Parking Garage, or at the Curbside.
- Added handling to pull over or yield for emergency vehicles (e.g. police cars, fire trucks, ambulances).
- Added navigation and routing into the vision-based neural network for real-time handling of blocked roads and detours.
- Added additional Speed Profile to further customize driving style preference.
- Improved handling for static and dynamic gates.
- Improved offsetting for road debris (e.g. tires, tree branches, boxes).
- Improve handling of several scenarios, including unprotected turns, lane changes, vehicle cut-ins, and school buses.
- Improved FSD’s ability to manage system faults and recover smoothly from degraded operation for enhanced reliability.
- Added alerting for residue build-up on interior windshield that may impact front camera visibility. If affected, visit Service for cleaning!
- Added automatic narrow field washing to provide rapid and efficient front camera self-cleaning, and optimize aerodynamics wash at higher vehicle speed.
- Camera visibility can lead to increased attention monitoring sensitivity.
Upcoming Improvements:
- Overall smoothness and sentience.
- Parking spot selection and parking quality.
News
Tesla is not sparing any expense in ensuring the Cybercab is safe
Images shared by the longtime watcher showed 16 Cybercab prototypes parked near Giga Texas’ dedicated crash test facility.
The Tesla Cybercab could very well be the safest taxi on the road when it is released and deployed for public use. This was, at least, hinted at by the intensive safety tests that Tesla seems to be putting the autonomous two-seater through at its Giga Texas crash test facility.
Intensive crash tests
As per recent images from longtime Giga Texas watcher and drone operator Joe Tegtmeyer, Tesla seems to be very busy crash testing Cybercab units. Images shared by the longtime watcher showed 16 Cybercab prototypes parked near Giga Texas’ dedicated crash test facility just before the holidays.
Tegtmeyer’s aerial photos showed the prototypes clustered outside the factory’s testing building. Some uncovered Cybercabs showed notable damage and one even had its airbags engaged. With Cybercab production expected to start in about 130 days, it appears that Tesla is very busy ensuring that its autonomous two-seater ends up becoming the safest taxi on public roads.
Prioritizing safety
With no human driver controls, the Cybercab demands exceptional active and passive safety systems to protect occupants in any scenario. Considering Tesla’s reputation, it is then understandable that the company seems to be sparing no expense in ensuring that the Cybercab is as safe as possible.
Tesla’s focus on safety was recently highlighted when the Cybertruck achieved a Top Safety Pick+ rating from the Insurance Institute for Highway Safety (IIHS). This was a notable victory for the Cybertruck as critics have long claimed that the vehicle will be one of, if not the, most unsafe truck on the road due to its appearance. The vehicle’s Top Safety Pick+ rating, if any, simply proved that Tesla never neglects to make its cars as safe as possible, and that definitely includes the Cybercab.