Connect with us

News

NASA set for upcoming Mars mission to seek signs of ancient life on the red planet

An artist rendering imagines NASA's Mars 2020 Perseverance rover on the Red Planet. (Image credit: NASA/JPL-Caltech)

Published

on

Just three weeks ahead of liftoff, NASA and launch provider United Launch Alliance (ULA) announced that NASA’s Mars 2020 rover, Perseverance, and its Martian helicopter sidekick, Ingenuity, were mated with the Atlas V 541 rocket that will kick off the seven-month journey to the Red Planet. The precious cargo encapsulated inside of a protective payload fairing was carefully hoisted by crane operators to rest atop the Atlas V rocket. The payload joins the Atlas V common core booster, four solid rocket boosters, and the Centaur upper stage to achieve the stack’s final flight configuration height of 197 feet (60 meters).

Inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida, the agency’s Mars 2020 Perseverance rover is being prepared for encapsulation in the United Launch Alliance Atlas V payload fairing on June 18, 2020. (Image Credit:  NASA/Christian Mangano)

The United Launch Alliance (ULA) payload fairing with NASA’s Mars 2020 Perseverance rover secured inside is positioned on top of the ULA Atlas V rocket inside the Vertical Integration Facility (VIF) at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida on July 7, 2020. (Image Credit: NASA/Kim Shiflett)

The final stacking procedure was completed inside of the Vertical Integration Facility (VIF) at Cape Canaveral Air Force Station’s Space Launch Complex 41 (SLC-41). The rocket and payload will remain inside the protective structure and complete final check out tests until it is time quite literally roll to the launchpad. Crane operators first set down the payload for a soft touch to begin final full physical and electrical connection. The spacecraft and rocket will undergo integrated electrical testing as well as a battery of other tests as separate spacecraft and simultaneously as one complete unit.

On Friday (July 10), ULA president and chief executive officer, Tory Bruno, stated on Twitter that the Integrated Systems Test (IST) had been completed successfully. According to a previous mission statement posted to the ULA blog site, the IST is a typical pre-launch run down of the various connected systems between the spacecraft and launch vehicle to “verify proper functionality of launch vehicle systems, (and) conduct a simulated countdown and run through the launch sequence.”

The launch vehicle and integrated payload will remain inside the VIF undergoing mission-specific activities and final system checkouts over the next two weeks. Once all pre-flight activities have been successfully completed, approximately two days ahead of the scheduled launch attempt, the entire stack located on top of the Mobile Launch Platform will make the 1,800ft (550 meters) trip to the SLC-41 launchpad which will take about forty-minutes on a modified railway.

Inside the Vertical Integration Facility (VIF) at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, the United Launch Alliance (ULA) payload fairing with NASA’s Mars 2020 Perseverance rover inside is secured on top of the ULA Atlas V rocket on July 7, 2020. (Image Credit: NASA/Kim Shiflett)

Known as an astrobiology mission and outfitted with seven instruments, the Perseverance rover will conduct new science, sample collection, and test new technology in search of ancient microbial life on the distant planet. The rover will spend the length of one Martian year – two Earth years – exploring the region around its landing site. It will collect and cache samples of the Martian surface to possibly be collected and returned to Earth by future joint missions currently under consideration by NASA and the European Space Agency.

Members of NASA’s Mars Helicopter team attach a thermal film enclosure to the fuselage of the flight model (the actual vehicle going to the Red Planet). The image was taken on Feb. 1, 2019, inside the Space Simulator, a 25-foot-wide (7.62-meter-wide) vacuum chamber at NASA’s Jet Propulsion Laboratory in Pasadena, California. (Image Credit: NASA/JPL)

The first interplanetary helicopter, Ingenuity, is a small 4-pound (1.8 kilograms) autonomous solar-powered aircraft that will conduct a series of experimental test flights. Ingenuity is traveling to Mars solely for a demonstrative mission and is not connected to the Perseverance rover by any means other than hitching a ride to the Red Planet. The new technology will demonstrate an ability to create lift in the thin atmosphere and lower gravity environment of Mars to help inform future aerial exploration and science delivery missions.

Currently, NASA and ULA are targeting the launch of the interplanetary mission on July 30th at 7:50 am EDT/4:50 PDT. Should they be necessary, multiple backup launch opportunities are available until the close of the interplanetary launch window on August 15th. Regardless of the launch date, after a seven-month-long, 290 million mile (467 million kilometers) journey – the rover and helicopter will arrive at Mars’s Jezero Crater, the home to an ancient Martian river delta, for a landing attempt on February 18, 2021. The landing date is perhaps even more crucial than the launch date as mission planners must take into account landing site lighting and temperature conditions and the locations of Mars-orbiting satellites required to relay crucial mission-specific information back to Earth.

Should the launch have to abort, and the 2020 window is missed completely, the robots will have to wait until 2022 when Earth’s orbit lines up just right with that of Mars, and the next interplanetary launch window opens up.

Advertisement
-->

Space Reporter.

Advertisement
Comments

News

Tesla reliability rankings skyrocket significantly in latest assessment

“They definitely have their struggles, but by continuing to refine and not make huge changes in their models, they’re able to make more reliable vehicles, and they’ve moved up our rankings.”

Published

on

Credit: Tesla

Tesla ranked in the Top 10 of the most reliable car companies for 2026, as Consumer Reports’ latest index showed significant jumps from the past two years.

In 2022, Tesla ranked 27th out of 28 brands. Last year, it came in 17th.

However, 2026’s rankings were differentCR‘s rankings officially included Tesla in the Top 10, its best performance to date.

Finishing tenth, the full Top 10 is:

  1. Subaru
  2. BMW
  3. Porsche
  4. Honda
  5. Toyota
  6. Lexus
  7. Lincoln
  8. Hyundai
  9. Acura
  10. Tesla

Tesla has had steady improvements in its build quality, and its recent refinements of the Model 3 and Model Y have not gone unnoticed.

The publication’s Senior Director of Auto Testing, Jake Fisher, said about Tesla that the company’s ability to work through the rough patches has resulted in better performance (via CNBC):

“They definitely have their struggles, but by continuing to refine and not make huge changes in their models, they’re able to make more reliable vehicles, and they’ve moved up our rankings.”

Advertisement
-->

He continued to say that Tesla’s vehicles have become more reliable over time, and its decision to avoid making any significant changes to its bread-and-butter vehicles has benefited its performance in these rankings.

Legacy automakers tend to go overboard with changes, sometimes keeping a model name but recognizing a change in its “generation.” This leads to constant growing pains, as the changes in design require intense adjustments on the production side of things.

Instead, Tesla’s changes mostly come from a software standpoint, which are delivered through Over-the-Air updates, which improve the vehicle’s functionality or add new features.

Only one Tesla vehicle scored below average in Consumer Reports’ rankings for 2026 was the Cybertruck. Fisher’s belief that Tesla improves its other models over time might prove to be true with Cybertruck in a few years.

Tesla Cybertruck gets reviewed by Consumer Reports

Advertisement
-->

He continued:

“They’re definitely improving by keeping with things and refining, but if you look at their 5- to 10-year-old models that are out there, when it comes to reliability, they’re dead last of all the brands. They’re able to improve the reliability if they don’t make major changes.”

Regarding Subaru’s gold medal placing on the podium, Fisher said:

“While Subaru models provide good performance and comfort, they also excel in areas that may not be immediately apparent during a test drive.”

Other notable brands to improve are Rivian, which bumped itself slightly from 31 to 26. Chevrolet finished 24th, GMC ended up 29th, and Ford saw itself in 18th.

Advertisement
-->
Continue Reading

Elon Musk

Tesla Full Self-Driving v14.2.1 texting and driving: we tested it

We decided to test it, and our main objective was to try to determine a more definitive label for when it would allow you to grab your phone and look at it without any nudge from the in-car driver monitoring system.

Published

on

Credit: Grok

On Thursday, Tesla CEO Elon Musk said that Full Self-Driving v14.2.1 would enable texting and driving “depending on [the] context of surrounding traffic.”

Tesla CEO Elon Musk announces major update with texting and driving on FSD

We decided to test it, and our main objective was to try to determine a more definitive label for when it would allow you to grab your phone and look at it without any nudge from the in-car driver monitoring system.

I’d also like to add that, while Tesla had said back in early November that it hoped to allow this capability within one to two months, I still would not recommend you do it. Even if Tesla or Musk says it will allow you to do so, you should take into account the fact that many laws do not allow you to look at your phone. Be sure to refer to your local regulations surrounding texting and driving, and stay attentive to the road and its surroundings.

The Process

Based on Musk’s post on X, which said the ability to text and drive would be totally dependent on the “context of surrounding traffic,” I decided to try and find three levels of congestion: low, medium, and high.

Advertisement
-->

I also tried as best as I could to always glance up at the road, a natural reaction, but I spent most of my time, during the spans of when it was in my hand, looking at my phone screen. I limited my time looking at the phone screen to a few seconds, five to seven at most. On local roads, I didn’t go over five seconds; once I got to the highway, I ensured the vehicle had no other cars directly in front of me.

Also, at any time I saw a pedestrian, I put my phone down and was fully attentive to the road. I also made sure there were no law enforcement officers around; I am still very aware of the law, which is why I would never do this myself if I were not testing it.

I also limited the testing to no more than one minute per attempt.

I am fully aware that this test might ruffle some feathers. I’m not one to text and drive, and I tried to keep this test as abbreviated as possible while still getting some insight on how often it would require me to look at the road once again.

The Results

Low Congestion Area

I picked a local road close to where I live at a time when I knew there would be very little traffic. I grabbed my phone and looked at it for no more than five seconds before I would glance up at the road to ensure everything was okay:

Advertisement
-->

Looking up at the road was still regular in frequency; I would glance up at the road after hitting that five-second threshold. Then I would look back down.

I had no nudges during this portion of the test. Traffic was far from even a light volume, and other vehicles around were very infrequently seen.

Medium Congestion Area

This area had significantly more traffic and included a stop at a traffic light. I still kept the consecutive time of looking at my phone to about five seconds.

Advertisement
-->

I would quickly glance at the road to ensure everything was okay, then look back down at my phone, spending enough time looking at a post on Instagram, X, or Facebook to determine what it was about, before then peeking at the road again.

There was once again no alert to look at the road, and I started to question whether I was even looking at my phone long enough to get an alert:

Based on past versions of Full Self-Driving, especially dating back to v13, even looking out the window for too long would get me a nudge, and it was about the same amount of time, sometimes more, sometimes less, I would look out of a window to look at a house or a view.

Advertisement
-->

High Congestion Area

I decided to use the highway as a High Congestion Area, and it finally gave me an alert to look at the road.

As strange as it is, I felt more comfortable looking down at my phone for a longer amount of time on the highway, especially considering there is a lower chance of a sudden stop or a dangerous maneuver by another car, especially as I was traveling just 5 MPH over in the left lane.

This is where I finally got an alert from the driver monitoring system, and I immediately put my phone down and returned to looking at the road:

Advertisement
-->

Once I was able to trigger an alert, I considered the testing over with. I think in the future I’d like to try this again with someone else in the car to keep their eyes on the road, but I’m more than aware that we can’t always have company while driving.

My True Thoughts

Although this is apparently enabled based on what was said, I still do not feel totally comfortable with it. I would not ever consider shooting a text or responding to messages because Full Self-Driving is enabled, and there are two reasons for that.

The first is the fact that if an accident were to happen, it would be my fault. Although it would be my fault, people would take it as Tesla’s fault, just based on what media headlines usually are with accidents involving these cars.

Secondly, I am still well aware that it’s against the law to use your phone while driving. In Pennsylvania, we have the Paul Miller Law, which prohibits people from even holding their phones, even at stop lights.

I’d feel much more comfortable using my phone if liability were taken off of me in case of an accident. I trust FSD, but I am still erring on the side of caution, especially considering Tesla’s website still indicates vehicle operators have to remain attentive while using either FSD or Autopilot.

Advertisement
-->

Check out our full test below:

Continue Reading

Elon Musk

Tesla CEO Elon Musk announces major update with texting and driving on FSD

“Depending on context of surrounding traffic, yes,” Musk said in regards to FSD v14.2.1 allowing texting and driving.

Published

on

Credit: carwow/YouTube

Tesla CEO Elon Musk has announced a major update with texting and driving capabilities on Full Self-Driving v14.2.1, the company’s latest version of the FSD suite.

Tesla Full Self-Driving, even in its most mature and capable versions, is still a Level 2 autonomous driving suite, meaning it requires attention from the vehicle operator.

You cannot sleep, and you should not take attention away from driving; ultimately, you are still solely responsible for what happens with the car.

The vehicles utilize a cabin-facing camera to enable attention monitoring, and if you take your eyes off the road for too long, you will be admonished and advised to pay attention. After five strikes, FSD and Autopilot will be disabled.

However, Musk announced at the Annual Shareholder Meeting in early November that the company would look at the statistics, but it aimed to allow people to text and drive “within the next month or two.”

Advertisement
-->

He said:

“I am confident that, within the next month or two, we’re gonna look at the safety statistics, but we will allow you to text and drive.”

Advertisement
-->

Today, Musk confirmed that the current version of Full Self-Driving, which is FSD v14.2.1, does allow for texting and driving “depending on context of surrounding traffic.”

There are some legitimate questions with this capability, especially as laws in all 50 U.S. states specifically prohibit texting and driving. It will be interesting to see the legality of it, because if a police officer sees you texting, they won’t know that you’re on Full Self-Driving, and you’ll likely be pulled over.

Some states prohibit drivers from even holding a phone when the car is in motion.

Advertisement
-->

It is certainly a move toward unsupervised Full Self-Driving operation, but it is worth noting that Musk’s words state it will only allow the vehicle operator to do it depending on the context of surrounding traffic.

He did not outline any specific conditions that FSD would allow a driver to text and drive.

Continue Reading