News
NASA set for upcoming Mars mission to seek signs of ancient life on the red planet
Just three weeks ahead of liftoff, NASA and launch provider United Launch Alliance (ULA) announced that NASA’s Mars 2020 rover, Perseverance, and its Martian helicopter sidekick, Ingenuity, were mated with the Atlas V 541 rocket that will kick off the seven-month journey to the Red Planet. The precious cargo encapsulated inside of a protective payload fairing was carefully hoisted by crane operators to rest atop the Atlas V rocket. The payload joins the Atlas V common core booster, four solid rocket boosters, and the Centaur upper stage to achieve the stack’s final flight configuration height of 197 feet (60 meters).


The United Launch Alliance (ULA) payload fairing with NASA’s Mars 2020 Perseverance rover secured inside is positioned on top of the ULA Atlas V rocket inside the Vertical Integration Facility (VIF) at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida on July 7, 2020. (Image Credit: NASA/Kim Shiflett)
The final stacking procedure was completed inside of the Vertical Integration Facility (VIF) at Cape Canaveral Air Force Station’s Space Launch Complex 41 (SLC-41). The rocket and payload will remain inside the protective structure and complete final check out tests until it is time quite literally roll to the launchpad. Crane operators first set down the payload for a soft touch to begin final full physical and electrical connection. The spacecraft and rocket will undergo integrated electrical testing as well as a battery of other tests as separate spacecraft and simultaneously as one complete unit.
On Friday (July 10), ULA president and chief executive officer, Tory Bruno, stated on Twitter that the Integrated Systems Test (IST) had been completed successfully. According to a previous mission statement posted to the ULA blog site, the IST is a typical pre-launch run down of the various connected systems between the spacecraft and launch vehicle to “verify proper functionality of launch vehicle systems, (and) conduct a simulated countdown and run through the launch sequence.”
The launch vehicle and integrated payload will remain inside the VIF undergoing mission-specific activities and final system checkouts over the next two weeks. Once all pre-flight activities have been successfully completed, approximately two days ahead of the scheduled launch attempt, the entire stack located on top of the Mobile Launch Platform will make the 1,800ft (550 meters) trip to the SLC-41 launchpad which will take about forty-minutes on a modified railway.

Known as an astrobiology mission and outfitted with seven instruments, the Perseverance rover will conduct new science, sample collection, and test new technology in search of ancient microbial life on the distant planet. The rover will spend the length of one Martian year – two Earth years – exploring the region around its landing site. It will collect and cache samples of the Martian surface to possibly be collected and returned to Earth by future joint missions currently under consideration by NASA and the European Space Agency.

The first interplanetary helicopter, Ingenuity, is a small 4-pound (1.8 kilograms) autonomous solar-powered aircraft that will conduct a series of experimental test flights. Ingenuity is traveling to Mars solely for a demonstrative mission and is not connected to the Perseverance rover by any means other than hitching a ride to the Red Planet. The new technology will demonstrate an ability to create lift in the thin atmosphere and lower gravity environment of Mars to help inform future aerial exploration and science delivery missions.
Currently, NASA and ULA are targeting the launch of the interplanetary mission on July 30th at 7:50 am EDT/4:50 PDT. Should they be necessary, multiple backup launch opportunities are available until the close of the interplanetary launch window on August 15th. Regardless of the launch date, after a seven-month-long, 290 million mile (467 million kilometers) journey – the rover and helicopter will arrive at Mars’s Jezero Crater, the home to an ancient Martian river delta, for a landing attempt on February 18, 2021. The landing date is perhaps even more crucial than the launch date as mission planners must take into account landing site lighting and temperature conditions and the locations of Mars-orbiting satellites required to relay crucial mission-specific information back to Earth.
Should the launch have to abort, and the 2020 window is missed completely, the robots will have to wait until 2022 when Earth’s orbit lines up just right with that of Mars, and the next interplanetary launch window opens up.
Investor's Corner
Tesla releases Q4 and FY 2025 vehicle delivery and production report
Deliveries stood at 406,585 Model 3/Y and 11,642 other models, for a total of 418,227 vehicles.
Tesla (NASDAQ:TSLA) has reported its Q4 2025 production and deliveries, with 418,227 vehicles delivered and 434,358 produced worldwide. Energy storage deployments hit a quarterly record at 14.2 GWh.
Tesla’s Q4 and FY 2025 results were posted on Friday, January 2, 2026.
Q4 2025 production and deliveries
In Q4 2025, Tesla produced 422,652 Model 3/Y units and 11,706 other models, which are comprised of the Model S, Model X, and the Cybertruck, for a total of 434,358 vehicles. Deliveries stood at 406,585 Model 3/Y and 11,642 other models, for a total of 418,227 vehicles.
Energy deployments reached 14.2 GWh, a new record. Similar to other reports, Tesla posted a company thanked customers, employees, suppliers, shareholders, and supporters for its fourth quarter results.
In comparison, analysts included in Tesla’s company-compiled consensus estimate that Tesla would deliver 422,850 vehicles and deploy 13.4 GWh of battery storage systems in Q4 2025.
Tesla’s Full Year 2025 results
For the full year, Tesla produced a total of 1,654,667 vehicles, comprised of 1,600,767 Model Y/3 and 53,900 other models. Tesla also delivered 1,636,129 vehicles in FY 2025, comprised of 1,585,279 Model Y/3 and 50,850 other models. Energy deployments totaled 46.7 GWh over the year.
In comparison, analysts included in Tesla’s company-compiled consensus expected the company to deliver a total of 1,640,752 vehicles for full year 2025. Analysts also expected Tesla’s energy division to deploy a total of 45.9 GWh during the year.
Tesla will post its financial results for the fourth quarter of 2025 after market close on Wednesday, January 28, 2026. The company’s Q4 and FY 2025 earnings call is expected to be held on the same day at 4:30 p.m. Central Time.
Elon Musk
Starlink achieves major milestones in 2025 progress report
Starlink wrapped up 2025 with impressive growth, adding more than 4.6 million new active customers and expanding service to 35 additional countries, territories, and markets.
Starlink wrapped up 2025 with impressive growth, adding more than 4.6 million new active customers and expanding service to 35 additional countries, territories, and markets. The company also completed deployment of its first-generation Direct to Cell constellation, launching over 650 satellites in just 18 months to enable cellular connectivity.
SpaceX highlighted Starlink’s impressive 2025 progress in an extensive report.
Key achievements from Starlink’s 2025 Progress
Starlink connected over 4.6 million new customers with high-speed internet while bringing service to 35 more regions worldwide in 2025. Starlink is now connecting 9.2 million people worldwide. The service achieved this just weeks after hitting its 8 million customer milestone.
Starlink is now available in 155 markets, including areas that are unreachable by traditional ISPs. As per SpaceX, Starlink has also provided over 21 million airline passengers and 20 million cruise passengers with reliable high-speed internet connectivity during their travels.
Starlink Direct to Cell
Starlink’s Direct to Cell constellation, more than 650 satellites strong, has already connected over 12 million people at least once, marking a breakthrough in global mobile coverage.
Starlink Direct to Cell is currently rolled out to 22 countries and 6 continents, with over 6 million monthly customers. Starlink Direct to Cell also has 27 MNO partners to date.
“This year, SpaceX completed deployment of the first generation of the Starlink Direct to Cell constellation, with more than 650 satellites launched to low-Earth orbit in just 18 months. Starlink Direct to Cell has connected more than 12 million people, and counting, at least once, providing life-saving connectivity when people need it most,” SpaceX wrote.
News
Tesla Giga Nevada celebrates production of 6 millionth drive unit
To celebrate the milestone, the Giga Nevada team gathered for a celebratory group photo.
Tesla’s Giga Nevada has reached an impressive milestone, producing its 6 millionth drive unit as 2925 came to a close.
To celebrate the milestone, the Giga Nevada team gathered for a celebratory group photo.
6 million drive units
The achievement was shared by the official Tesla Manufacturing account on social media platform X. “Congratulations to the Giga Nevada team for producing their 6 millionth Drive Unit!” Tesla wrote.
The photo showed numerous factory workers assembled on the production floor, proudly holding golden balloons that spelled out “6000000″ in front of drive unit assembly stations. Elon Musk gave credit to the Giga Nevada team, writing, “Congrats on 6M drive units!” in a post on X.
Giga Nevada’s essential role
Giga Nevada produces drive units, battery packs, and energy products. The facility has been a cornerstone of Tesla’s scaling since opening, and it was the crucial facility that ultimately enabled Tesla to ramp the Model 3 and Model Y. Even today, it serves as Tesla’s core hub for battery and drivetrain components for vehicles that are produced in the United States.
Giga Nevada is expected to support Tesla’s ambitious 2026 targets, including the launch of vehicles like the Tesla Semi and the Cybercab. Tesla will have a very busy 2026, and based on Giga Nevada’s activities so far, it appears that the facility will be equally busy as well.