Connect with us

News

NASA braces for ‘7 minutes of terror’ as rover, rocket crane near Mars

An illustration of NASA’s Perseverance rover landing safely on Mars. (Credit: NASA?JPL-Caltech)

Published

on

NASA’s most ambitious – and difficult – Mars rover mission to date is nearly at the end of its interplanetary journey, but it is just the beginning of the excitement. On Tuesday (Feb. 16) engineers at NASA’s Jet Propulsion Laboratory (JPL) confirmed that Perseverance is doing well and is prepared to attempt a touchdown at about 12:55 p.m. PST (3:55 p.m. EST) on Thursday (Feb. 18).

NASA’s fifth Mars rover, Perseverance, will attempt a tried and true, but terrifying landing method to reach the Martain surface safely. In a process called entry, descent, and landing (EDL) the rover will burst through the Martian atmosphere at 12,500mph (20,000 kph) and slow to just under 2mph (3kph) in about seven minutes – a process which has earned the nickname “seven minutes of terror.”

This illustration shows the events that occur in the final minutes of the nearly seven-month journey that NASA’s Perseverance rover takes to Mars. Hundreds of critical events must execute perfectly and exactly on time for the rover to land on Mars safely on Feb. 18, 2021. (Credit: NASA/JPL-Caltech)

From interplanetary spacecraft to Martian rover in seven minutes

For the past seven months, Perseverance has traveled 300 million miles (480 million kilometers) as an interplanetary spacecraft. When it reaches its final destination of Mars on Feb. 18, the spacecraft will have to shed some layers to prepare to land on the Martian surface. Perhaps the most challenging part of the seven minutes of terror is that Perseverance will conduct every aspect autonomously – engineers back on Earth will not be able to intervene due to the communications time delay caused by the distance between Earth and Mars.

This illustration depicts five major components of the Mars 2020 spacecraft. Top to bottom: cruise stage, backshell, descent stage, Perseverance rover and heat shield. The various components perform critical roles during the vehicle’s cruise to Mars and its dramatic Entry, Descent, and Landing. (Credit: NASA/JPL-Caltech)

During the first stage of landing known as entry, Perseverance will slam into the relatively thin Martian atmosphere at the neck-break speed of 12,500mph (20,000 kph). At approximately 12:38 p.m. PST (3:38 p.m. EST), 10 minutes prior to entering the Martian atmosphere, the Cruise Stage which has reliably propelled Perseverance on its journey from Earth via solar power will separate. This will initiate the official transition from spacecraft into rover.

To protect the rover and its critical hardware Perseverance is housed inside of a protective covering – called an aeroshell – and is outfitted with a robust heat shield. Small thrusters at the crown of the aeroshell help to reorient itself and ensure that the heat shield is facing in the right direction as it enters the atmosphere. The aeroshell and heatshield will absorb and deflect the brunt of the heat energy – reaching about 2,370 degrees Fahrenheit (about 1,300 degrees Celsius) – caused by the friction of entering the Martian atmosphere at such a high velocity.

Once through peak heating and deceleration, Perseverance will utilize a new technology called Range Trigger to determine its exact location and distance to the surface. The spacecraft will utilize this technology to autonomously determine the optimal time to deploy its supersonic parachute – the largest ever sent to Mars – and separate its heat shield. This is expected to occur at 12:52 p.m. PST (3:52 p.m. EST). Once the heat shield has separated the powered descent stage – and the Perseverance rover itself – will be exposed to the Martian environment.

In this illustration, NASA’s Perseverance rover gets its first look at the Martian surface below, after dropping its heat shield just under six minutes after entry into the Mars atmosphere. (Credit: NASA/JPL-Caltech)

Although a similar descent method has been used in the past with the landing of NASA’s Curiosity rover in 2012, Perseverance’s way of doing things has received a major upgrade.

Once the heat shield has been dispersed, Perseverance will use a radar and cameras to utilize a new landing technology called Terrain-Relative Navigation. Essentially, Perseverance will continuously take images to map out the Martian surface as it descends to determine its exact location. The spacecraft will actively decide and target the best possible safe landing site which can be autonomously changed up to 2,000 feet (600 meters). Then the aeroshell and parachute are jettisoned and it’s the powered descent module’s time to shine.

Advertisement
-->

Using rockets to land, rather than to launch

Just two minutes after ditching the heat shield, at 12:54 p.m. PST (3:54 p.m. EST) and only 1.3 miles (2.1 kilometers) above the surface, the powered descent stage will fire eight throttleable retrorockets to slow the spacecraft’s descent even more and steer it to its chosen landing target. During the powered descent phase, the spacecraft will slow from about 190 mph (306 kph) to just 1.7 mph (2.7 kph).

An illustration of NASA’s Perseverance rover landing safely on Mars. (Credit: NASA?JPL-Caltech)

Once the spacecraft determines that it is 65 feet (20 meters) from the surface by utilizing the Terrain-Relative Navigation, the powered descent stage will initiate the sky crane maneuver. In this phase, the Perseverance rover will be delicately lowered to the Martian surface with a system of Nylon cords.

At 12:55 p.m. PST (3:55 p.m. EST) the $2.4 billion NASA Mars 2020 mission will officially touchdown on the surface of Mars in the Jezero Crater. Once safely down, the sky crane will severe the cords and fly off for a crash landing at a safe distance away from the rover.

During the landing attempt, NASA’s Mars Reconnaissance Orbiter will be overhead and constantly sending telemetry back to Earth via NASA’s Deep Space Network. The telemetry will indicate to engineers back at NASA JPL if the landing procedure was successful and will confirm a touchdown at 12:55 p.m. PST (3:55 p.m. EST).

NASA’s Mars 2020 Perseverance rover and NASA’s Ingenuity Mars Helicopter (shown in an artist’s concept). (Credit: NASA/JPL-Caltech)

This will be the first time that a NASA Mars rover will be landing with its eyes open, so to speak. NASA hopes that the first images – and sounds – of the Martian landing will be available to release to the public within about an hour of confirmed touchdown.

Beginning around 11:15 am PST (19:15 UTC) on Thursday, February 18th, NASA will provide live coverage of Perseverance’s landing attempt. The agency will carry the coverage on NASA TV and its website, as well as a number of other platforms including YouTube, Twitter, Facebook, LinkedIn, Twitch, Daily Motion, Theta.TV, and the NASA app. You can view the entry, descent, and landing process in its entirety in the video below provided by NASA’s JPL.

Stay ahead of the curve and be the first to learn about new industry trends each week!

Follow along as our team gives you their take on the biggest stories of the week.

Space Reporter.

Advertisement
Comments

News

Tesla hints at Starlink integration with recent patent

“By employing polymer blends, some examples enable RF transmission from all the modules to satellites and other communication devices both inside and outside the vehicle.”

Published

on

Credit: Grok

Tesla hinted at a potential Starlink internet terminal integration within its vehicles in a recent patent, which describes a vehicle roof assembly with integrated radio frequency (RF) transparency.

The patent, which is Pub. No U.S. 2025/0368267 describes a new vehicle roof that is made of RF-transparent polymer materials, allowing and “facilitating clear communication with external devices and satellites.”

Tesla believes that a new vehicle roof design, comprised of different materials than the standard metallic or glass elements used in cars today, would allow the company to integrate modern vehicular technologies, “particularly those requiring radio frequency transmission and reception.

Instead of glass or metallic materials, Tesla says vehicles may benefit from high-strength polymer blends, such as Polycarbonate, Acrylonitrile Butadiene Styrene, or Acrylonitrile Styrene Acrylate.

These materials still provide ideal strength metrics for crashworthiness, stiffness for noise, vibration, and harshness control, and are compliant with head impact regulations.

They would also enable better performance with modern technologies, like internet terminals, which need an uninterrupted signal to satellites for maximum reception. Tesla writes in the patent:

“By employing polymer blends, some examples enable RF transmission from all the modules to satellites and other communication devices both inside and outside the vehicle.”

One of the challenges Tesla seems to be aware of with this type of roof design is the fact that it will still have to enable safety and keep that at the forefront of the design. As you can see in the illustration above, Tesla plans to use four layers to increase safety and rigidity, while also combating noise and vibration.

It notes in the patent that disclosed examples still meet the safety requirements outlined in the Federal Motor Vehicle Safety Standards (FMVSS).

Starlink integrated directly into Tesla vehicles would be a considerable advantage for owners. It would come with a handful of distinct advantages.

Initially, the inclusion of Starlink would completely eliminate cellular dead zones, something that is an issue, especially in rural areas. Starlink would provide connectivity in these remote regions and would ensure uninterrupted service during road trips and off-grid adventures.

It could also be a critical addition for Robotaxi, as it is crucial to have solid and reliable connectivity for remote monitoring and fleet management.

Starlink’s growing constellation, thanks to SpaceX’s routine and frequent launch schedule, will provide secure, stable, and reliable internet connectivity for Tesla vehicles.

SpaceX reaches incredible milestone with Starlink program

Although many owners have already mounted Starlink Mini dishes under their glass roofs for a similar experience, it may be integrated directly into Teslas in the coming years, either as an upgrade or a standard feature.

Continue Reading

News

Tesla supplements Holiday Update by sneaking in new Full Self-Driving version

It seems Tesla was waiting for the Hardware 4 rollout, as it wanted to also deploy a new Full Self-Driving version to those owners, as it appeared in the release notes for the Holiday Update last night.

Published

on

Credit: Tesla

Tesla has surprised some owners by sneaking in a new Full Self-Driving version with the wide release of the Holiday Update, which started rolling out to Hardware 4 owners on Friday night.

Tesla has issued a controlled and very slow release pattern with the Holiday Update, which rolls out with Software Version 2025.44.25.5.

For the past two weeks, as it has rolled out to Hardware 3 and older Tesla owners, the company has kept its deployment of the new Software Version relatively controlled.

It seems Tesla was waiting for the Hardware 4 rollout, as it wanted to also deploy a new Full Self-Driving version to those owners, as it appeared in the release notes for the Holiday Update last night.

Tesla Full Self-Driving v14.2.1.25 made its first appearance last night to Hardware 4 owners who are members of the Early Access Program (EAP). It appears to be a slight refinement from FSD v14.2.1, which has been out for a couple of weeks.

Many owners welcome the new FSD version, us included, because we’ve been less than impressed with v14.2.1. We have experienced some minor regressions with v14.2.1, especially with Speed Limit recognition, Speed Profile tinkering, and parking performance.

As it stands, Full Self-Driving is still particularly impressive, but Tesla is evidently having an issue with some of the adjustments, as it is still refining some of the performance aspects of the suite. This is expected and normal with some updates, as not all of them are an improvement in all areas; we routinely see some things backtrack every once in a while.

This new FSD version is likely to take care of those things, but it also includes all of the awesome Holiday Update features, which include:

  • Grok with Navigation Commands (Beta) – Grok will now add and edit destinations.
  • Tesla Photobooth – Take pictures inside your car using the cabin-facing camera
  • Dog Mode Live Activity – Check on your four-legged friend on your phone through periodic snapshots taken of the cabin
  • Dashcam Viewer Update – Includes new metrics, like steering wheel angle, speed, and more
  • Santa Mode – New graphics, trees, and a lock chime
  • Light Show Update – Addition of Jingle Rush light show
  • Custom Wraps and License Plates – Colorizer now allows you to customize your vehicle even further, with custom patterns, license plates, and tint
  • Navigation Improvements – Easier layout and setup
  • Supercharger Site Map – Starting at 18 pilot locations, a 3D view of the Supercharger you’re visiting will be available
  • Automatic Carpool Lane Routing – Navigation will utilize carpool lanes if enabled
  • Phone Left Behind Chime – Your car will now tell you if you left a phone inside
  • Charge Limit Per Location – Set a charge limit for each location
  • ISS Docking Simulator –  New game
  • Additional Improvements – Turn off wireless charging pad, Spotify improvements, Rainbow Rave Cave, Lock Sound TRON addition

Tesla also added two other things that were undocumented, like Charging Passport and information on USB drive storage to help with Dashcam.

Continue Reading

Cybertruck

Tesla updates Cybertruck owners about key Powershare feature

Published

on

Credit: Tesla

Tesla is updating Cybertruck owners on its timeline of a massive feature that has yet to ship: Powershare with Powerwall.

Powershare is a bidirectional charging feature exclusive to Cybertruck, which allows the vehicle’s battery to act as a portable power source for homes, appliances, tools, other EVs, and more. It was announced in late 2023 as part of Tesla’s push into vehicle-to-everything energy sharing, and acting as a giant portable charger is the main advantage, as it can provide backup power during outages.

Cybertruck’s Powershare system supports both vehicle-to-load (V2L) and vehicle-to-home (V2H), making it flexible and well-rounded for a variety of applications.

However, even though the feature was promised with Cybertruck, it has yet to be shipped to vehicles. Tesla communicated with owners through email recently regarding Powershare with Powerwall, which essentially has the pickup act as an extended battery.

Powerwall discharge would be prioritized before tapping into the truck’s larger pack.

However, Tesla is still working on getting the feature out to owners, an email said:

“We’re writing to let you know that the Powershare with Powerwall feature is still in development and is now scheduled for release in mid-2026. 

This new release date gives us additional time to design and test this feature, ensuring its ability to communicate and optimize energy sharing between your vehicle and many configurations and generations of Powerwall. We are also using this time to develop additional Powershare features that will help us continue to accelerate the world’s transition to sustainable energy.”

Owners have expressed some real disappointment in Tesla’s continuous delays in releasing the feature, as it was expected to be released by late 2024, but now has been pushed back several times to mid-2026, according to the email.

Foundation Series Cybertruck buyers paid extra, expecting the feature to be rolled out with their vehicle upon pickup.

Cybertruck’s Lead Engineer, Wes Morrill, even commented on the holdup:

He said that “it turned out to be much harder than anticipated to make powershare work seamlessly with existing Powerwalls through existing wall connectors. Two grid-forming devices need to negotiate who will form and who will follow, depending on the state of charge of each, and they need to do this without a network and through multiple generations of hardware, and test and validate this process through rigorous certifications to ensure grid safety.”

It’s nice to see the transparency, but it is justified for some Cybertruck owners to feel like they’ve been bait-and-switched.

Continue Reading