Connect with us

News

NASA funds study on SpaceX BFR as option for massive space telescope launch

Published

on

Speaking at the Exoplanets II conference in Cambridge, UK July 6th, geophysicist and exoplanet hunter Dr. Debra Fischer briefly revealed that NASA had funded a study that would examine SpaceX’s next-gen BFR rocket as an option for launching LUVOIR, a massive space telescope expected to take the reigns of exoplanet research in the 2030s.

Conceptualized to follow in the footsteps of NASA’s current space telescope expertise and (hopefully) to learn from the many various mistakes made by their contractors, the LUVOIR (shorthand for Large UV/Optical/IR Surveyor) concept is currently grouped into two different categories, A and B. A is a full-scale, uncompromised telescope with an unfathomably vast 15-meter primary mirror and a sunshade with an area anywhere from 5000 to 20000 square meters (1-4 acres). B is a comparatively watered-down take on the broadband surveyor telescope, with a much smaller 8-meter primary mirror, likely accompanied by a similarly reduced sunshade (and price tag, presumably).

Advertisement

Remember, this is a space telescope that would need to fit into the payload fairing of a rocket, survive the launch into orbit, and then journey nearly one million miles from Earth to its final operational destination, all before deploying a mirror and starshade as large or larger than Mr Steven’s SpaceX  fairing recovery net. The James Webb Space Telescope (JWST), a rough successor to Hubble with a 6.5-meter primary mirror, is the only space telescope even remotely comparable to LUVOIR, and it has yet to launch after suffering a full decade of delays and almost inconceivable budget overruns. All we can do is hope that Northrop Grumman (primary contractor for JWST) is kept away from future giant space telescopes like LUVOIR.

LUVOIR A is pictured here with a 15-meter mirror and absolutely vast sunshade, roughly 80-100m long. (NASA)

The rocket problem

Nevertheless, the sheer scale of LUVOIR brings us back to an existential problem faced by all space telescopes – how to get into space in the first place. In this case, JWST offers a small taste of what launching such a large telescope requires, although it only truly applies the 8m LUVOIR B. The reason LUVOIR’s conceptual design was split into two sizes is specifically tied to the question of launch, with LUVOIR B’s 8m size cap dictated by the ~5 meter-diameter payload fairings prevalent and readily available in today’s launch industry.

https://twitter.com/Shamrocketeer/status/821799890942652417

LUVOIR A’s 15-meter mirror, however, would require an equally massive payload fairing. At least at the start, LUVOIR A was conceptualized with NASA’s Space Launch System (SLS) Block 2 as the launch vehicle, a similarly conceptual vehicle baselined with a truly massive 8.4 or 10-meter diameter payload fairing, much larger than anything flown to this day. However, the utterly unimpressive schedule performance of the SLS Block 1 development – let alone Block 1B or 2 – has undoubtedly sown more than a little doubt over the expectation of its availability for launching LUVOIR and other huge spacecraft. As a result, NASA has reportedly funded the exploration of alternative launch vehicles for the A version of LUVOIR – SpaceX’s Cargo BFR variant, in this case.

While only a maximum of 9 meters in diameter, the baselined cargo spaceship’s (BFS Cargo) payload bay has been estimated to have a usable volume of approximately 1500 cubic meters, comparing favorably to SLS’ 8.4 and 10-meter fairings with ~1000 to ~1700 cubic meters. The more traditional SLS fairing may offer more flexibility for minimizing complex deployment mechanisms for large telescopes (a sore spot for JWST), but SLS Block 2 is almost entirely up in the air at the moment, and liable to cost $5-10 billion alone to develop even after SLS Block 1 is flying (NET mid-2020). On the other hand, barring abject and total failure, SpaceX’s BFR rocket and spaceship could have many, many launches under its belt and a proven track record of reliability, whereas SLS Block 2 is unlikely to fly more than a handful of times ever, even if it gets built.

 

Advertisement

With any luck, the results of the LUVOIR SpaceX BFR launch analysis will make their way into the public sphere once the study is completed, perhaps revealing a few tidbits about the capabilities of the next-generation composite rocket. Another astrophysicist familiar with the project also noted that Blue Origin was firmly in the running of similar conceptual launch studies, hinting at a potential competition for commercial launches of each company’s massive future rockets.

Follow us for live updates, peeks behind the scenes, and photos from Teslarati’s East and West Coast photographers.

Teslarati   –   Instagram Twitter

Tom CrossTwitter

Pauline Acalin  Twitter

Advertisement

Eric Ralph Twitter

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Tariff reprieve might be ‘Tesla-friendly,’ but it’s also an encouragement to others

Tesla stands to benefit from the tariff reprieve, but it has some work cut out for it as well.

Published

on

tesla employee
(Photo: Tesla)

After Secretary of Commerce Howard Lutnick made adjustments to the automotive tariff program that was initially announced, many quickly pointed to the reprieve as “Tesla-friendly.”

While that may be the case right now, it was also a nudge of encouragement to other companies, Tesla included, to source parts from the U.S. in an effort to strengthen domestic manufacturing. Many companies are close, and it will only take a handful of improvements to save themselves from tariffs on their cars as well.

Yesterday, Sec. Lutnick confirmed that cars manufactured with at least 85 percent of domestic content will face zero tariffs. Additionally, U.S. automakers would receive credit up to 15 percent of the value of vehicles to offset the cost of imported parts.

Big Tesla win? Sec Lutnick says cars with 85% domestic content will face zero tariffs

“This is ‘finish your cars in America and you win’,” Lutnick said.

Advertisement

Many were quick to point out that only three vehicles currently qualify for this zero-tariff threshold: all three are Teslas.

However, according to Kelley Blue Book’s most recent study that revealed who makes the most American cars, there are a lot of vehicles that are extremely close to also qualifying for these tariff reductions.

Tesla has three vehicles that are within five percent, while Ford, Honda, Jeep, Chevrolet, GMC, and Volkswagen have many within just ten percent of the threshold.

Tesla completely dominates Kogod School’s 2024 Made in America Auto Index

It is within reach for many.

Advertisement

Right now, it is easy to see why some people might think this is a benefit for Tesla and Tesla only.

But it’s not, because Tesla has its Cybertruck, Model S, and Model X just a few percentage points outside of that 85 percent cutoff. They, too, will feel the effects of the broader strategy that the Trump administration is using to prioritize domestic manufacturing and employment. More building in America means more jobs for Americans.

Credit: Tesla

However, other companies that are very close to the 85 percent cutoff are only a few components away from also saving themselves the hassle of the tariffs.

Ford has the following vehicles within just five percent of the 85 percent threshold:

  • Ford Mustang GT automatic (80%)
  • Ford Mustang GT 5.0 (80%)
  • Ford Mustang GT Coupe Premium (80%)

Honda has several within ten percent:

  • Honda Passport All-Wheel-Drive (76.5%)
  • Honda Passport Trailsport (76.5)

Jeep has two cars:

  • Jeep Wrangler Rubicon (76%)
  • Jeep Wrangler Sahara (76%)

Volkswagen has one with the ID.4 AWD 82-kWh (75.5%). GMC has two at 75.5% with the Canyon AT4 Crew Cab 4WD and the Canyon Denali Crew Cab 4WD.

Chevrolet has several:

  • Chevrolet Colorado 2.7-liter (75.5%)
  • Chevrolet Colorado LT Crew Cab 2WD 2.7-liter (75.5%)
  • Chevrolet Colorado Z71 Crew Cab 4WD 2.7-liter (75.5%)

These companies are close to reaching the 85% threshold, but adjustments need to be made to work toward that number.

Anything from seats to fabric to glass can be swapped out for American-made products, making these cars more domestically sourced and thus qualifying them for the zero-tariff boundary.

Advertisement

Frank DuBois of American University said that manufacturers like to see stability in their relationships with suppliers and major trade partners. He said that Trump’s tariff plan could cause “a period of real instability,” but it will only be temporary.

Now is the time to push American manufacturing forward, solidifying a future with more U.S.-made vehicles and creating more domestic jobs. Tesla will also need to scramble to make adjustments to its vehicles that are below 85%.

Continue Reading

News

Tesla Cybertruck RWD production in full swing at Giga Texas

Videos of several freshly produced Cybertruck LR RWD units were shared on social media platform X.

Published

on

Credit: Joe Tegtmeyer/X

It appears that Tesla is indeed ramping the production of the Cybertruck Long Range Rear Wheel Drive (LR RWD), the most affordable variant of the brutalist all-electric pickup truck.

Videos of several freshly produced Cybertruck LR RWD units were shared on social media platform X.

Giga Texas Footage

As per longtime Tesla watcher Joe Tegtmeyer, Giga, Texas, was a hotbed of activity when he conducted his recent drone flyover. Apart from what seemed to be Cybercab castings being gathered in the complex, a good number of Cybertruck LR RWD units could also be seen in the facility’s staging area. The Cybertruck LR RWD units are quite easy to spot since they are not equipped with the motorized tonneau cover that is standard on the Cybertruck AWD and Cyberbeast.

The presence of the Cybertruck LR RWD units in Giga Texas’ staging area suggests that Tesla is ramping the production of the base all-electric pickup truck. This bodes well for the vehicle, which is still premium priced despite missing a good number of features that are standard in the Cybertruck AWD and Cyberbeast.

Cybertruck Long Range RWD Specs

The Cybertruck LR RWD is priced at $69,990 before incentives, making it $10,000 more affordable than the Cybertruck AWD. For its price, the Cybertruck Long Range RWD offers a range of 350 miles per charge if equipped with its 18” standard Wheels. It can also add up to 147 miles of range in 15 minutes using a Tesla Supercharger.

Advertisement

Much of the cost-cutting measures taken by Tesla are evident in the cabin of the Cybertruck LR RWD. This could be seen in its textile seats, standard console, seven-speaker audio system with no active noise cancellation, and lack of a 9.4” second-row display. It is also missing the motorized tonneau cover, the 2x 120V and 1x 240V power outlets on the bed, and the 2x 120V power outlets in the cabin. It is also equipped with an adaptive coil spring suspension instead of the adaptive air suspension in the Cybertruck AWD and Cyberbeast.

Continue Reading

Elon Musk

Tesla preps for a Cybercab takeover of the Robotaxi platform after pilot program

Tesla looks to be preparing the Cybercab for Robotaxi operation as castings pile up at Gigafactory Texas.

Published

on

(Credit: Teslarati)

Tesla is evidently preparing for the Cybercab to take over the Robotaxi platform after the pilot program in Austin, Texas, is launched.

That claim is made based on new drone footage from Gigafactory Texas captured by Joe Tegtmeyer, who found hundreds of Cybercab castings that have accumulated on property in Austin.

The Cybercab is Tesla’s dedicated Robotaxi vehicle that was unveiled last October. It features just two seats and is minimalistic, aimed toward allowing the Full Self-Driving suite to chauffeur passengers from Point A to Point B without ever having to deal with human interaction or any responsibilities within the vehicle.

In June, Tesla plans to launch its first Robotaxi rides in Texas. Although employees in Austin and in the Bay Area of San Francisco have already had access to over 1,500 trips and 15,000 miles of autonomous (but supervised) travel, Tesla plans to launch a driverless version in a limited fashion in June.

However, this initial pilot program, while presumably operating on an Unsupervised version of the FSD, will only utilize Model Ys, at least at first.

The drone footage captured by Tegtmeyer today seems to tell a story of a quick transition to the Cybercab for the Robotaxi responsibilities, especially as Tesla gets its feet wet with the early Unsupervised FSD rides and gains confidence in the fleet’s ability to navigate passengers:

It appears that between 400 and 500 Cybercab castings can be seen in the images Joe captured, a very respectable number considering the company said it will not launch the Robotaxi with the initial rides it gives in Austin.

The images seem to paint a picture that Tesla is truly ready to get things moving in terms of the Cybercab project. While it does not plan to use the vehicle initially, its manufacturing efforts for the car are being prepared by stacking these castings so they’re ready to be expanded upon into the real thing.

On the most recent Earnings Call, Tesla’s VP of Vehicle Engineering, Lars Moravy, said the Cybercab’s engineering has progressed over the last several months to “derisk things like corrosion, the ceiling across the seams of the vehicle, and when you marry several components,” and even things like early crash testing have already taken place.

Moravy continued, “As with all that combined, we kind of go into the builds that we have in this quarter for the Cybercab product, and that’s the next real big test of full-scale integration with the unboxed process. And that’s kind of where we are. So you’ll see them on the test roads in a couple of months.”

Continue Reading

Trending