News
NASA confirms SpaceX will become the first private company to send astronauts to the space station
NASA has unambiguously confirmed that SpaceX – with its Crew Dragon spacecraft – will soon become the first private company in history to launch astronauts to the International Space Station (ISS), both an unexpected twist from the usually tight-lipped space agency and a major upset for Boeing.
Shortly after revealing that the first astronaut-rated Crew Dragon capsule had been completed and shipped eastward, SpaceX and NASA confirmed that the historic spacecraft arrived at SpaceX’s Florida processing facilities on Thursday, February 13th. With that milestone out of the way, it’s now believed that all the hardware needed for SpaceX’s ‘Demo-2’ astronaut launch debut – Falcon 9 booster B1058, a Falcon 9 upper stage, Crew Dragon capsule C206, and a Crew Dragon trunk – is finished, acceptance-tested, and preparing for flight in Cape Canaveral, Florida.
Extremely out of character for NASA given that Crew Dragon Demo-2 is expected to launch no earlier than two or three months from now, the space agency’s public statement that SpaceX will launch astronauts first simultaneously implies bad news for Boeing and its Starliner spacecraft. Contracted under the Commercial Crew Program in 2014, Boeing – awarded $5.1B – and SpaceX – awarded $3.1B – have been working to build two separate crew launch vehicles (Starliner and Crew Dragon) with the intention of ferrying NASA astronauts to and from the International Space Station (ISS). While both providers have had their own challenges, Boeing has been beset by numerous software failures born out during Starliner’s December 2019 orbital launch debut.

The Commercial Crew account has since deleted its tweet and NASA’s accompanying blog post – linked in said tweet – was tweaked to reflect a slightly different interpretation, but the original text unequivocally stated that “the SpaceX Crew Dragon spacecraft [assigned to] the first crew launch from American soil since 2011 has arrived at the launch site.” Given that both the tweet and blog post contained that exact same phrase, the fact that NASA retroactively censored and corrected itself strongly suggests that SpaceX will, in fact, become the first private company in history to launch astronauts into orbit.
NASA has a fairly notorious and years-long history of going well out of its way to avoid saying or implying anything that could be perceived as even slightly critical of Boeing. A prime contractor dating back to the first stage of the Saturn V rocket, Boeing has effectively secured billions of dollars of NASA’s annual budget and possesses deep political sway thanks in large part to the revolving doors between industry and government and the hundreds of millions of dollars it has spent on lobbying over the last two decades.
More recently, Boeing’s Starliner spacecraft suffered several major software-related failures during its December 2019 Orbital Flight Test, narrowly avoiding a second “catastrophic” failure mode solely because a separate software failure 48 hours prior forced the company to reexamine its code. In simple terms, both software failures probably should and could have been caught and fixed before launch if even a semblance of routine digital simulations and integrated vehicle testing had been performed by Boeing.
Unsurprisingly, NASA – at least after the fact – is now extremely concerned by the lack of such a basic and commonsense level of quality control in Boeing’s Starliner software pipeline. Even NASA, arguably, could and should have been attentive enough to catch some of Boeing’s shortcomings before Starliner’s launch debut. Adding to the embarrassment, NASA performed a “pretty invasive” $5M review of SpaceX’s safety practices and general engineering culture last year, triggered (not a joke) after CEO Elon Musk was seen very briefly smoking on a recorded interview. As part of regulations for the Commercial Crew Program, NASA was obligated to perform a similar review of Boeing’s safety culture, but the contractor demanded that NASA pay five times more – $25M – for the same thing.

NASA unsurprisingly balked at Boeing’s demands and wound up performing a more or less symbolic “paper” review that typically involves ‘auditing’ paperwork supplied by the company itself. Despite the fact that Boeing would soon find itself mired in two fatal 737 Max crashes, killing 346 people as a result of shoddy software, an unreliable design, and bad internal communication, NASA still never pursued a similar safety review with Boeing. Now, only after a nearly-catastrophic in-space failure, NASA has finally decided that that safety review is necessary, while both NASA and Boeing will also have to extensively review all Starliner software and fix the flawed practices used to create and qualify it.
Perhaps most importantly, NASA and Boeing need to determine whether Starliner’s software failures were a one-off fluke or something symptomatic of deeper problems. Due to that uncertainty and the massive amount of work that will be required to answer those questions, it’s almost certain that Boeing will have to perform a second uncrewed Starliner test flight for NASA to verify that its problems have been rectified. A second OFT would almost certainly delay Boeing’s astronaut launch debut by 6-12 months. SpaceX’s astronaut launch debut, for example, was delayed at least 9 months after a Crew Dragon capsule exploded during thruster testing after a flawless orbital launch and recovery.

As a result, even though SpaceX’s Crew Dragon ‘Demo-2’ astronaut launch debut is likely more than two months away, even some part of NASA – famous for incredibly neutral and conservative public statements – appears to be all but certain that SpaceX will launch astronauts first. As of February 13th, 2020, all Demo-2 Falcon 9 and Dragon hardware is likely finished and awaiting integration in Florida. If things go as planned over the next several weeks, Falcon 9 and Crew Dragon could launch astronauts Bob Behnken and Doug Hurley as early as late-April or May 2020.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
Elon Musk
Tesla announces crazy new Full Self-Driving milestone
The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.
Tesla has announced a crazy new Full Self-Driving milestone, as it has officially confirmed drivers have surpassed over 8 billion miles traveled using the Full Self-Driving (Supervised) suite for semi-autonomous travel.
The FSD (Supervised) suite is one of the most robust on the market, and is among the safest from a data perspective available to the public.
On Wednesday, Tesla confirmed in a post on X that it has officially surpassed the 8 billion-mile mark, just a few months after reaching 7 billion cumulative miles, which was announced on December 27, 2025.
Tesla owners have now driven >8 billion miles on FSD Supervisedhttps://t.co/0d66ihRQTa pic.twitter.com/TXz9DqOQ8q
— Tesla (@Tesla) February 18, 2026
The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.
The milestone itself is significant, especially considering Tesla has continued to gain valuable data from every mile traveled. However, the pace at which it is gathering these miles is getting faster.
Secondly, in January, Musk said the company would need “roughly 10 billion miles of training data” to achieve safe and unsupervised self-driving. “Reality has a super long tail of complexity,” Musk said.
Training data primarily means the fleet’s accumulated real-world miles that Tesla uses to train and improve its end-to-end AI models. This data captures the “long tail” — extremely rare, complex, or unpredictable situations that simulations alone cannot fully replicate at scale.
This is not the same as the total miles driven on Full Self-Driving, which is the 8 billion miles milestone that is being celebrated here.
The FSD-supervised miles contribute heavily to the training data, but the 10 billion figure is an estimate of the cumulative real-world exposure needed overall to push the system to human-level reliability.
News
Tesla Cybercab production begins: The end of car ownership as we know it?
While this could unlock unprecedented mobility abundance — cheaper rides, reduced congestion, freed-up urban space, and massive environmental gains — it risks massive job displacement in ride-hailing, taxi services, and related sectors, forcing society to confront whether the benefits of AI-driven autonomy will outweigh the human costs.
The first Tesla Cybercab rolled off of production lines at Gigafactory Texas yesterday, and it is more than just a simple manufacturing milestone for the company — it’s the opening salvo in a profound economic transformation.
Priced at under $30,000 with volume production slated for April, the steering-wheel-free, pedal-less Robotaxi-geared vehicle promises to make personal car ownership optional for many, slashing transportation costs to as little as $0.20 per mile through shared fleets and high utilization.

Credit: wudapig/Reddit< /a>
While this could unlock unprecedented mobility abundance — cheaper rides, reduced congestion, freed-up urban space, and massive environmental gains — it risks massive job displacement in ride-hailing, taxi services, and related sectors, forcing society to confront whether the benefits of AI-driven autonomy will outweigh the human costs.
Let’s examine the positives and negatives of what the Cybercab could mean for passenger transportation and vehicle ownership as we know it.
The Promise – A Radical Shift in Transportation Economics
Tesla has geared every portion of the Cybercab to be cheaper and more efficient. Even its design — a compact, two-seater, optimized for fleets and ride-sharing, the development of inductive charging, around 300 miles of range on a small battery, half the parts of the Model 3, and revolutionary “unboxed” manufacturing — is all geared toward rapid production.
Operating at a fraction of what today’s rideshare prices are, the Cybercab enables on-demand autonomy for a variety of people in a variety of situations.
Tesla ups Robotaxi fare price to another comical figure with service area expansion
It could also be the way people escape expensive and risky car ownership. Buying a vehicle requires expensive monthly commitments, including insurance and a payment if financed. It also immediately depreciates.
However, Cybercab could unlock potential profitability for owning a car by adding it to the Robotaxi network, enabling passive income. Cities could have parking lots repurposed into parks or housing, and emissions would drop as shared electric vehicles would outnumber gas cars (in time).
The first step of Tesla’s massive production efforts for the Cybercab could lead to millions of units annually, turning transportation into a utility like electricity — always available, cheap, and safe.
The Dark Side – Job Losses and Industry Upheaval
With Robotaxi and Cybercab, they present the same negatives as broadening AI — there’s a direct threat to the economy.
Uber, Lyft, and traditional taxis will rely on human drivers. Robotaxi will eliminate that labor cost, potentially displacing millions of jobs globally. In the U.S. alone, ride-hailing accounts for billions of miles of travel each year.
There are also potential ripple effects, as suppliers, mechanics, insurance adjusters, and even public transit could see reduced demand as shared autonomy grows. Past automation waves show job creation lags behind destruction, especially for lower-skilled workers.
Gig workers, like those who are seeking flexible income, face the brunt of this. Displaced drivers may struggle to retrain amid broader AI job shifts, as 2025 estimates bring between 50,000 and 300,000 layoffs tied to artificial intelligence.
It could also bring major changes to the overall competitive landscape. While Waymo and Uber have partnered, Tesla’s scale and lower costs could trigger a price war, squeezing incumbents and accelerating consolidation.
Balancing Act – Who Wins and Who Loses
There are two sides to this story, as there are with every other one.
The winners are consumers, Tesla investors, cities, and the environment. Consumers will see lower costs and safer mobility, while potentially alleviating themselves of awkward small talk in ride-sharing applications, a bigger complaint than one might think.
Elon Musk confirms Tesla Cybercab pricing and consumer release date
Tesla investors will be obvious winners, as the launch of self-driving rideshare programs on the company’s behalf will likely swell the company’s valuation and increase its share price.
Cities will have less traffic and parking needs, giving more room for housing or retail needs. Meanwhile, the environment will benefit from fewer tailpipes and more efficient fleets.
A Call for Thoughtful Transition
The Cybercab’s production debut forces us to weigh innovation against equity.
If Tesla delivers on its timeline and autonomy proves reliable, it could herald an era of abundant, affordable mobility that redefines urban life. But without proactive policies — retraining, safety nets, phased deployment — this revolution risks widening inequality and leaving millions behind.
Elon on the MKBHD bet, stating “Yes” to the question of whether Tesla would sell a Cybercab for $30k or less to a customer before 2027 https://t.co/sfTwSDXLUN
— TESLARATI (@Teslarati) February 17, 2026
The real question isn’t whether the Cybercab will disrupt — it’s already starting — it’s whether society is prepared for the economic earthquake it unleashes.
News
Tesla Model 3 wins Edmunds’ Best EV of 2026 award
The publication rated the Model 3 at an 8.1 out of 10, and with its most recent upgrades and changes, Edmunds says, “This is the best Model 3 yet.”
The Tesla Model 3 has won Edmunds‘ Top Rated Electric Car of 2026 award, beating out several other highly-rated and exceptional EV offerings from various manufacturers.
This is the second consecutive year the Model 3 beat out other cars like the Model Y, Audi A6 Sportback E-tron, and the BMW i5.
The car, which is Tesla’s second-best-selling vehicle behind the popular Model Y crossover, has been in the company’s lineup for nearly a decade. It offers essentially everything consumers could want from an EV, including range, a quality interior, performance, and Tesla’s Full Self-Driving suite, which is one of the best in the world.
The Tesla Model 3 has won Edmunds Top EV of 2026:
“The Tesla Model 3 might be the best value electric car you can buy, combining an Edmunds Rating of 8.1 out of 10, a starting price of $43,880, and an Edmunds-tested range of 338 miles. This is the best Model 3 yet. It is… pic.twitter.com/ARFh24nnDX
— TESLARATI (@Teslarati) February 18, 2026
The publication rated the Model 3 at an 8.1 out of 10, and with its most recent upgrades and changes, Edmunds says, “This is the best Model 3 yet.”
In its Top Rated EVs piece on its website, it said about the Model 3:
“The Tesla Model 3 might be the best value electric car you can buy, combining an Edmunds Rating of 8.1 out of 10, a starting price of $43,880, and an Edmunds-tested range of 338 miles. This is the best Model 3 yet. It is impressively well-rounded thanks to improved build quality, ride comfort, and a compelling combination of efficiency, performance, and value.”
Additionally, Jonathan Elfalan, Edmunds’ Director of Vehicle Testing, said:
“The Model 3 offers just about the perfect combination of everything — speed, range, comfort, space, tech, accessibility, and convenience. It’s a no-brainer if you want a sensible EV.”
The Model 3 is the perfect balance of performance and practicality. With the numerous advantages that an EV offers, the Model 3 also comes in at an affordable $36,990 for its Rear-Wheel Drive trim level.