Connect with us

News

NASA to livestream first Mars landing in six years on November 26 with InSight lander

Published

on

On Monday, November 26, 2018, a Mars lander will arrive on the surface of the red planet for the first time in six years, and NASA will broadcast the event live on their TV channel and website. The craft’s name is “InSight”, and it’s scheduled to complete its journey begun May 5, 2018 on an Atlas V rocket by setting down onto Martian regolith at approximately 3 pm EST. A video stream of Mission Control at the Jet Propulsion Laboratory in California will be available where viewers can listen to live landing commentary. InSight’s descent itself will not have a video component; however, photographs of the craft while parachuting and shortly after landing may be transmitted.

InSight’s name is short for “Interior Exploration using Seismic Investigations, Geodesy and Heat Transport”, and as the name implies, its mission is to collect seismographic data from the surface of Mars in order to gather information about the planet’s core. The lander has six instruments on board that will propogate seismic waves through Mars’s interior after hammering a probe about 10-16 feet into the ground, a process which will take about 2-3 months to complete. The vibrations measured at the surface will then be measured and interpreted to reveal details about its layers and, by extension, the early formation of both it and Earth.

Advertisement

Unlike a rocket launch where delays are always possible, you can safely mark your calendar for this event. NASA can’t change this date even if they wanted to thanks to the physics involved in the lander’s interplanetary flight. If you’re interested in celebrating InSight’s Martian arrival in a community setting, watch parties open to the public are planned at scientific facilities and libraries around the world.

InSight in a clean room at Vandenberg AFB in California. | Credit: Pauline Acalin

Viewers of the live streamed landing will hear updates from scientists as they track InSight’s journey from a fiery entry speed of 12,300 mph to a 5 mph landing speed. Drag against the craft’s heat shield, parachutes, and retrorockets will slow its descent. The mission’s scientists hope to receive an image of the Martian surface shortly after, but they’ve cautioned that the initial photos will likely be cloudy due to dust kicked up from the event.

InSight will land in Mars’s Elysium Planitia (“the biggest parking lot on Mars”), an area near the planet’s equator. Its closest Earth-sent neighbor, the Curiosity rover, will be 240 miles away, and twin rovers Spirit and Opportunity will be located 1,600 and 5,200 miles away, respectively. Once on the surface, InSight’s first steps will be to unpack and deploy its solar panels to ensure power for the rest of its instruments.

The solar panels will provide about 600-700 watts on a clear Martian day, 200-300 during dustier conditions. For more perspective on this power source, NASA’s press release likened its maximum wattage to the requirements of a household blender (500 watts). The amount of energy converted just falls short of running a coffee machine (1000 watts), but plenty to “wake up” the lander after sleep, even if not a human.

Inside this Atlas V’s fairing, InSight and its twin Mars Cube One companions await launch. | Credit: Pauline Acalin

As a bonus for space fans, InSight did not set out on its interplanetary mission alone. Twin demonstration mini satellites named “Mars Cube One” (MarCO) launched with the lander and traveled separately to the planet. Along with having completed successful radio, antennae, steering, and propulsion tests during their journey, MarCo will test a new kind of data relay from Mars orbit during InSight’s descent to the surface. InSight will not depend on successful transmissions to and from MarCo to land.

MarCO also marks the first deep space mission for a type of tiny satellite called “CubeSats”, a class characterized by a small form factor and miniaturized technologies that are often commercial, off-the-shelf components. MarCO fits this category and each satellite is about the size of a briefcase. The significantly lower development and launch costs of CubeSats compared to larger satellites have already opened space science to students and limited budget commercial initiatives. The success of MarCO in the deep space environment will now potentially open up interplanetary exploration beyond government agencies to encompass more civilian initiatives.

Advertisement

Watch NASA’s video below to learn more about the lander:

Accidental computer geek, fascinated by most history and the multiplanetary future on its way. Quite keen on the democratization of space. | It's pronounced day-sha, but I answer to almost any variation thereof.

Advertisement
Comments

News

Tesla already has a complete Robotaxi model, and it doesn’t depend on passenger count

That scenario was discussed during the company’s Q4 and FY 2025 earnings call, when executives explained why the majority of Robotaxi rides will only involve one or two people.

Published

on

Credit: @AdanGuajardo/X

Tesla already has the pieces in place for a full Robotaxi service that works regardless of passenger count, even if the backbone of the program is a small autonomous two-seater. 

That scenario was discussed during the company’s Q4 and FY 2025 earnings call, when executives explained why the majority of Robotaxi rides will only involve one or two people.

Two-seat Cybercabs make perfect sense

During the Q&A portion of the call, Tesla Vice President of Vehicle Engineering Lars Moravy pointed out that more than 90% of vehicle miles traveled today involve two or fewer passengers. This, the executive noted, directly informed the design of the Cybercab. 

“Autonomy and Cybercab are going to change the global market size and mix quite significantly. I think that’s quite obvious. General transportation is going to be better served by autonomy as it will be safer and cheaper. Over 90% of vehicle miles traveled are with two or fewer passengers now. This is why we designed Cybercab that way,” Moravy said. 

Advertisement

Elon Musk expanded on the point, emphasizing that there is no fallback for Tesla’s bet on the Cybercab’s autonomous design. He reiterated that the autonomous two seater’s production is expected to start in April and noted that, over time, Tesla expects to produce far more Cybercabs than all of its other vehicles combined.

“Just to add to what Lars said there. The point that Lars made, which is that 90% of miles driven are with one or two passengers or one or two occupants, essentially, is a very important one… So this is clearly, there’s no fallback mechanism here. It’s like this car either drives itself or it does not drive… We would expect over time to make far more CyberCabs than all of our other vehicles combined. Given that 90% of distance driven or distance being distance traveled exactly, no longer driving, is one or two people,” Musk said. 

Tesla’s robotaxi lineup is already here

The more interesting takeaway from the Q4 and FY 2025 earnings call is the fact that Tesla does not need the Cybercab to serve every possible passenger scenario, simply because the company already has a functional Robotaxi model that scales by vehicle type.

The Cybercab will handle the bulk of the Robotaxi network’s trips, but for groups that need three or four seats, the Model Y fills that role. For higher-end or larger-family use cases, the extended-wheelbase Model Y L could cover five or six occupants, provided that Elon Musk greenlights the vehicle for North America. And for even larger groups or commercial transport, Tesla has already unveiled the Robovan, which could seat over ten people.

Advertisement

Rather than forcing one vehicle to satisfy every use case, Tesla’s approach mirrors how transportation works today. Different vehicles will be used for different needs, while unifying everything under a single autonomous software and fleet platform.

Continue Reading

News

Tesla Cybercab spotted with interesting charging solution, stimulating discussion

The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.

Published

on

Credit: What's Inside | X

Tesla Cybercab units are being tested publicly on roads throughout various areas of the United States, and a recent sighting of the vehicle’s charging port has certainly stimulated some discussions throughout the community.

The Cybercab is geared toward being a fully-autonomous vehicle, void of a steering wheel or pedals, only operating with the use of the Full Self-Driving suite. Everything from the driving itself to the charging to the cleaning is intended to be operated autonomously.

But a recent sighting of the vehicle has incited some speculation as to whether the vehicle might have some manual features, which would make sense, but let’s take a look:

The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.

Now, it is important to remember these are prototype vehicles, and not the final product. Additionally, Tesla has said it plans to introduce wireless induction charging in the future, but it is not currently available, so these units need to have some ability to charge.

However, there are some arguments for a charging system like this, especially as the operation of the Cybercab begins after production starts, which is scheduled for April.

Wireless for Operation, Wired for Downtime

It seems ideal to use induction charging when the Cybercab is in operation. As it is for most Tesla owners taking roadtrips, Supercharging stops are only a few minutes long for the most part.

The Cybercab would benefit from more frequent Supercharging stops in between rides while it is operating a ride-sharing program.

Tesla wireless charging patent revealed ahead of Robotaxi unveiling event

However, when the vehicle rolls back to its hub for cleaning and maintenance, standard charging, where it is plugged into a charger of some kind, seems more ideal.

In the 45-minutes that the car is being cleaned and is having maintenance, it could be fully charged and ready for another full shift of rides, grabbing a few miles of range with induction charging when it’s out and about.

Induction Charging Challenges

Induction charging is still something that presents many challenges for companies that use it for anything, including things as trivial as charging cell phones.

While it is convenient, a lot of the charge is lost during heat transfer, which is something that is common with wireless charging solutions. Even in Teslas, the wireless charging mat present in its vehicles has been a common complaint among owners, so much so that the company recently included a feature to turn them off.

Production Timing and Potential Challenges

With Tesla planning to begin Cybercab production in April, the real challenge with the induction charging is whether the company can develop an effective wireless apparatus in that short time frame.

It has been in development for several years, but solving the issue with heat and energy loss is something that is not an easy task.

In the short-term, Tesla could utilize this port for normal Supercharging operation on the Cybercab. Eventually, it could be phased out as induction charging proves to be a more effective and convenient option.

Continue Reading

News

Tesla confirms that it finally solved its 4680 battery’s dry cathode process

The suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Published

on

tesla 4680
Image used with permission for Teslarati. (Credit: Tom Cross)

Tesla has confirmed that it is now producing both the anode and cathode of its 4680 battery cells using a dry-electrode process, marking a key breakthrough in a technology the company has been working to industrialize for years. 

The update, disclosed in Tesla’s Q4 and FY 2025 update letter, suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Dry cathode 4680 cells

In its Q4 and FY 2025 update letter, Tesla stated that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process. The confirmation addresses long-standing questions around whether Tesla could bring its dry cathode process into sustained production.

The disclosure was highlighted on X by Bonne Eggleston, Tesla’s Vice President of 4680 batteries, who wrote that “both electrodes use our dry process.”

Advertisement

Tesla first introduced the dry-electrode concept during its Battery Day presentation in 2020, pitching it as a way to simplify production, reduce factory footprint, lower costs, and improve energy density. While Tesla has been producing 4680 cells for some time, the company had previously relied on more conventional approaches for parts of the process, leading to questions about whether a full dry-electrode process could even be achieved.

4680 packs for Model Y

Tesla also revealed in its Q4 and FY 2025 Update Letter that it has begun producing battery packs for certain Model Y vehicles using its in-house 4680 cells. As per Tesla: 

“We have begun to produce battery packs for certain Model Ys with our 4680 cells, unlocking an additional vector of supply to help navigate increasingly complex supply chain challenges caused by trade barriers and tariff risks.”

The timing is notable. With Tesla preparing to wind down Model S and Model X production, the Model Y and Model 3 are expected to account for an even larger share of the company’s vehicle output. Ensuring that the Model Y can be equipped with domestically produced 4680 battery packs gives Tesla greater flexibility to maintain production volumes in the United States, even as global battery supply chains face increasing complexity.

Advertisement
Continue Reading