News
Shark Tank-backed Natrion unveils solid-state battery separator with near-zero fire risk
Mark Cuban-backed Natrion has unveiled its latest developments in solid-state battery manufacturing with the new LISIC278 separator in a traditional pouch cell. The separator allows for a higher thermal resistance than other EV batteries, decreasing the risk of fires and combustion. Additionally, the cell showed a 40 percent increase in the charge rate compared to a conventional battery with the same capacity.
Natrion’s LISIC278 material utilizes a Lithium Solid Ionic Composite (LISIC) electrolyte that mimics the performance and specs of a standard polyolefin separator, which sits between the anode and cathode. The purpose of the separator is to prevent short circuits by keeping the electrodes apart while also allowing ionic charges to flow through with the necessary passage of currents in a cell. The LISIC cell can utilize significantly less of the electrolyte liquid by delivering high ion transport capability at ambient conditions. This keeps the cells’ thermal resistance above 200° Celsius (392 F) without having any porosity.
The LISIC278 separator’s ability to remain stable at high temperatures nearly eliminates the risk of fire, while it also exhibits a reduced ability for a thermal event altogether.
CEO and Co-Founder Alex Kosyakov said that reducing flammable liquid electrolytes was a main focus because reducing the perception that battery cells will catch on fire is a key to growing mass EV adoption:
“Reducing our reliance on flammable liquids in EV batteries is key to reducing fire risk and ultimately making mass EV adoption more viable. So the fact that this data shows we can produce battery cells that are just as efficient with only a small fraction of that liquid is a huge win.”

Cycling performance of a two-layer pouch cell at C/3 charge and discharge using LISIC278 with an NMC532 cathode and natural graphite anode.
In addition to the LISIC278 cells’ stability, it also showed a 40 percent increase in charge rate, taking just 3 hours to charge as opposed to 5 hours for a conventional cell with the same capacity. Natrion utilized a standard pouch containing NMC532 cathode, LP40 liquid electrolyte, and a natural graphite anode with a state-of-the-art separator for its experiments. This was compared to the Natrion pouch, which was identical but utilized the LISIC279 separator instead of a conventional design.

The cell with the LISIC279 separator also displayed a high initial coulombic efficiency. Conventional lithium-ion cells “typically” have less energy available than they are charged with when used the first few times. Natrion cells did not display this issue and “exhibited higher initial coulombic efficiencies and resultantly improved capacity retention at higher C-rates,” the company said.
Dr. Jon Tuck, an expert in energy storage for Silent Koala, said using less electrolyte liquid while maintaining a high initial coulombic rate is difficult, especially at the capacity and C-rate threshold given here. “These results are highly promising and show a versatility of use for LISIC that we have yet to see from other solid-state electrolyte materials. It signals the potential of Natrion’s materials to really advance the industry and the technological feats being developed,” Dr. Tuck added.
Natrion is based in Binghamton, New York, and has operations in Champaign, Illinois.
Solid-state batteries utilize a solid material to allow energy to flow from the cathode to the anode, instead of traditional lithium-ion cells, which utilize a liquid electrolyte solution. EV makers have not been able to switch to solid-state technology due to its complex manufacturing processes. Additionally, researchers have not been able to find ideal solutions for the material it would utilize in the batteries, and this continues to be a severe bottleneck of solid-state development.
I’d love to hear from you! If you have any comments, concerns, or questions, please email me at joey@teslarati.com. You can also reach me on Twitter @KlenderJoey, or if you have news tips, you can email us at tips@teslarati.com.
News
Tesla Cybercab is changing the look of Austin’s roads, and it’s not even in production yet
Videos and photos showed the sleek, two-seat autonomous vehicles navigating traffic.
Even before entering production, Tesla’s Cybercab is already transforming the appearance of Austin’s streets, with multiple prototypes spotted testing in downtown areas recently.
Videos and photos showed the sleek, two-seat autonomous vehicles navigating traffic. Interestingly enough, the vehicles were equipped with temporary steering wheels and human safety drivers.
Recent Cybercab sightings
Over the weekend, enthusiasts captured footage of two Cybercabs driving together in central Austin, their futuristic silhouettes standing out amid regular traffic. While the vehicles featured temporary steering wheels and side mirrors for now, they retained their futuristic, production-intent exterior design.
Industry watcher Sawyer Merritt shared one of the vehicles’ videos, noting the increasing frequency of the autonomous two-seater’s sightings.
Previewing the autonomous future
Sightings of the Cybercab have been ramping in several key areas across the United States in recent weeks. Sightings include units at Apple’s Visitor Center in California, the Fremont factory test track, and in Austin’s streets.
The increased activity suggests that Tesla is in overdrive, validating the autonomous two-seater ahead of its planned volume production. Elon Musk confirmed at the 2025 Shareholder Meeting that manufacturing begins around April 2026 with ambitious targets, and during an All-Hands meeting earlier this year, Musk hinted that ultimately, Tesla’s factories should be able to produce one Cybercab every 10 seconds.
News
Tesla celebrates 9 million vehicles produced globally
The achievement, announced by Tesla Asia on X, celebrated not just the Shanghai team’s output but the company’s cumulative production across all its factories worldwide.
Tesla has achieved a new milestone, rolling out its nine millionth vehicle worldwide from Giga Shanghai.
The achievement, announced by Tesla Asia on X, celebrated not just the Shanghai team’s output but the company’s cumulative production across all its factories worldwide. The milestone came as 2025 drew to a close, and it inspired praise from some of the company’s key executives.
Tesla’s 9 million vehicle milestone
The commemorative photo from Tesla Asia featured the Giga Shanghai team assembled on the factory floor, surrounding the milestone Model Y unit, which looked pristine in white. The image was captioned: “Our 9 millionth vehicle globally has just rolled off the production line at Giga Shanghai. Thanks to our owners and supporters around the world.”
Senior Vice President of Automotive Tom Zhu praised Tesla’s factory teams for the remarkable milestone. He also shared his gratitude to Tesla owners for their support. “Congrats to all Tesla factories for this amazing milestone! Thanks to our owners for your continued support!” Zhu wrote in a post on X.
Giga Shanghai’s legacy
Tesla’s nine million vehicle milestone is especially impressive considering that just 207 days ago, the company announced that it had built its eight millionth car globally. The eight millionth Tesla, a red Model Y, was built in Giga Berlin. The fact that Tesla was able to build a million cars in less than seven months is quite an accomplishment.
Giga Shanghai, Tesla’s largest factory by volume, has been instrumental to the company’s overall operations, having reached four million cumulative vehicles earlier in 2025. The plant produces Model 3 and Model Y for both domestic Chinese and export markets, making it the company’s primary vehicle export hub.
News
Tesla officially publishes Q4 2025 vehicle delivery consensus
By releasing these numbers directly, Tesla establishes a clear, transparent benchmark ahead of its actual results.
Tesla has taken the rather unusual step of officially publishing its company-compiled Q4 2025 delivery consensus on the Investor Relations site. As per analyst estimates, Tesla is expected to deliver 422,850 vehicles and deploy 13.4 GWh of battery storage systems this Q4 2025.
By releasing these numbers directly, Tesla establishes a clear, transparent benchmark ahead of its actual results, making it harder for narratives to claim a “miss” based on outlier estimates.
Official consensus sets the record straight
Tesla’s IR press release detailed the consensus from 20 analysts for vehicle deliveries and 16 analysts for energy deployments. As per the release, full-year 2025 consensus delivery estimates come in at 1,640,752 vehicles, an 8.3% decline from 2025’s FY deliveries of 1,789,226 cars.
Tesla noted that while it “does not endorse any information, recommendations or conclusions made by the analysts,” its press release does provide a notable reference point. Analysts contributing to the company compiled consensus include Daiwa, DB, Wedbush, Oppenheimer, Canaccord, Baird, Wolfe, Exane, Goldman Sachs, RBC, Evercore ISI, Barclays, Wells Fargo, Morgan Stanley, UBS, Jefferies, Needham, HSBC, Cantor Fitzgerald, and William Blair.

Tesla’s busy Q4 2025
Tesla seems to be pushing hard to deliver as many vehicles as possible before the end of 2025, despite the company’s future seemingly being determined not by vehicle deliveries, but FSD and Optimus’ rollout and ramp. Still, reports from countries such as China are optimistic, with posts on social media hinting that Tesla’s delivery centers in the country are appearing packed as the final weeks of 2025 unfold.
The Tesla Model Y and Model 3 are also still performing well in China’s premium EV segment. Based on data from January to November, the Model Y took China’s number one spot in the RMB 200,000-RMB 300,000 segment for electric vehicles, selling 359,463 units. The Model 3 sedan took third place, selling 172,392. This is quite impressive considering that both the Model Y and Model 3 command a premium compared to their domestic rivals.