News
Advancement in nuclear fusion tech continues transition to clean energy future
The development of unlimited, carbon-neutral, and safe energy through nuclear fusion is expanding around the world, and scientists at the Atomic Energy Authority in the United Kingdom (AEA) have recently cleared one more key hurdle to making it a commercial reality: exhausting gas that’s hotter than the Sun. The hot plasma created during fusion power generation needs to cool down as it’s being used, but at its extreme temperatures, there aren’t any materials available to withstand the heat. Now, that problem appears to have been solved.
The AEA team’s answer to the heat issue is a “sacrificial wall” design which will require replacement every few years. Plasma will be moved down a path within its fusion generator’s holding device to cool it slightly before coming into contact with a specially designed wall for the remainder of the cooling process. However, even at a lower temperature, the heat will degrade the wall’s integrity over time and need to be changed. With the first nuclear fusion reactor set to turn on in seven years, AEA’s fusion exhaust system may be one of the developments that keeps it on schedule.
It’s said that imitation is the sincerest form of flattery, and recent fusion energy developments show that sentiment’s considerations don’t remain within the bounds of Earth. At about 90 million miles away, our Sun is essentially a fusion reactor in the sky, its large size creating enough gravity to force atoms together at its core and release massive amounts of energy. Artificially reproducing the conditions needed for this kind of generation is tough, but the attempt has been going on since the 1960s. The AEA is representative of one agency in a global endeavor.
The most advanced nuclear fusion project today is ITER, the International Nuclear Fusion Research experimental reactor in southern France, which hosts scientists from 35 countries dedicated to achieving the first ever positive fusion energy production. Their device is called a “tokamak”, and its structure is something like a flattened donut (torus) encapsulated by rings of powerful magnetic coils. The magnetic fields generated by the coils both suspend the plasma created by extreme heat and squeeze the plasma into a small space to create the fusion reactions. ITER is scheduled to turn its reactor on in 2025.
- A visualization of the ITER tokamak in operation.| Credit: ITER.org/Jamison Daniel, Oak Ridge Leadership Computing Facility
- A computer-animated visualization of the ITER tokamak in operation. | Credit: ITER.org
Creating fusion in a laboratory involves two primary parts: 1) creating plasma, a soup of electrons and nuclei released from their atomic structures due to extremely high temperatures; and 2) merging the nuclei of two different types of atoms, generally different forms of hydrogen. The heat in a tokamak is generated from both the magnetic field movement and external heating devices, and the nuclei merge is achieved by squeezing the plasma using those same magnetic fields into a constricted area to encourage collisions. Essentially, the high heat excites the atomic particles, speeding their motion, and their energetic movements within the magnetically confined area significantly increases the likelihood the nuclei will crash and fuse together. When this fusion occurs, a massive amount of energy is released, the object of desire for all involved in this field of research.
The amount of heat needed to convince atoms to release their electrons and form plasma is in the range of millions of degrees Celsius, the core of the Sun itself being 15 million degrees. Without high gravity to aid with squeezing plasma, as in the Sun’s case at 27 times the gravity of Earth, reactors on our planet need to heat well beyond the Sun’s temperature to ensure the atomic particles in the plasma collide and fuse. ITER’s tokamak heats to 100 million degrees Celsius.

All of this heating and magnetic control requires its own energy input, and this is where the current state of fusion energy development is focused. The ratio of energy used and energy produced is called “Q”, the desired amount aimed for by scientists in the field being 10:1. When ten times the energy is produced by nuclear fusion than used to produce it, it will have advanced to a level ready for further development as an alternative power source, or so goes the thinking. ITER’s specific goal is to produce 500 MW of fusion power from 50 MW of heating power.
Once energy is released from the fusion process, it can then be captured to create steam to power generators currently using other power sources such as coal and natural gas. This is another benefit purported benefit of fusion power; it can plug directly into existing power grids, minimizing any disruptions or requirements for new equipment. Combined with the abundant availability of hydrogen and the lack of greenhouses gases or radioactive waste, there are high hopes for fusion’s future as an all-in-one energy solution.
Elon Musk
Tesla Full Self-Driving pricing strategy eliminates one recurring complaint
Tesla’s new Full Self-Driving pricing strategy will eliminate one recurring complaint that many owners have had in the past: FSD transfers.
In the past, if a Tesla owner purchased the Full Self-Driving suite outright, the company did not allow them to transfer the purchase to a new vehicle, essentially requiring them to buy it all over again, which could obviously get pretty pricey.
This was until Q3 2023, when Tesla allowed a one-time amnesty to transfer Full Self-Driving to a new vehicle, and then again last year.
Tesla is now allowing it to happen again ahead of the February 14th deadline.
The program has given people the opportunity to upgrade to new vehicles with newer Hardware and AI versions, especially those with Hardware 3 who wish to transfer to AI4, without feeling the drastic cost impact of having to buy the $8,000 suite outright on several occasions.
Now, that issue will never be presented again.
Last night, Tesla CEO Elon Musk announced on X that the Full Self-Driving suite would only be available in a subscription platform, which is the other purchase option it currently offers for FSD use, priced at just $99 per month.
Tesla is shifting FSD to a subscription-only model, confirms Elon Musk
Having it available in a subscription-only platform boasts several advantages, including the potential for a tiered system that would potentially offer less expensive options, a pay-per-mile platform, and even coupling the program with other benefits, like Supercharging and vehicle protection programs.
While none of that is confirmed and is purely speculative, the one thing that does appear to be a major advantage is that this will completely eliminate any questions about transferring the Full Self-Driving suite to a new vehicle. This has been a particular point of contention for owners, and it is now completely eliminated, as everyone, apart from those who have purchased the suite on their current vehicle.
Now, everyone will pay month-to-month, and it could make things much easier for those who want to try the suite, justifying it from a financial perspective.
The important thing to note is that Tesla would benefit from a higher take rate, as more drivers using it would result in more data, which would help the company reach its recently-revealed 10 billion-mile threshold to reach an Unsupervised level. It does not cost Tesla anything to run FSD, only to develop it. If it could slice the price significantly, more people would buy it, and more data would be made available.
News
Tesla Model 3 and Model Y dominates U.S. EV market in 2025
The figures were detailed in Kelley Blue Book’s Q4 2025 U.S. Electric Vehicle Sales Report.
Tesla’s Model 3 and Model Y continued to overwhelmingly dominate the United States’ electric vehicle market in 2025. New sales data showed that Tesla’s two mass market cars maintained a commanding segment share, with the Model 3 posting year-to-date growth and the Model Y remaining resilient despite factory shutdowns tied to its refresh.
The figures were detailed in Kelley Blue Book’s Q4 2025 U.S. Electric Vehicle Sales Report.
Model 3 and Model Y are still dominant
According to the report, Tesla delivered an estimated 192,440 Model 3 sedans in the United States in 2025, representing a 1.3% year-to-date increase compared to 2024. The Model 3 alone accounted for 15.9% of all U.S. EV sales, making it one of the highest-volume electric vehicles in the country.
The Model Y was even more dominant. U.S. deliveries of the all-electric crossover reached 357,528 units in 2025, a 4.0% year-to-date decline from the prior year. It should be noted, however, that the drop came during a year that included production shutdowns at Tesla’s Fremont Factory and Gigafactory Texas as the company transitioned to the new Model Y. Even with those disruptions, the Model Y captured an overwhelming 39.5% share of the market, far surpassing any single competitor.
Combined, the Model 3 and Model Y represented more than half of all EVs sold in the United States during 2025, highlighting Tesla’s iron grip on the country’s mass-market EV segment.
Tesla’s challenges in 2025
Tesla’s sustained performance came amid a year of elevated public and political controversy surrounding Elon Musk, whose political activities in the first half of the year ended up fueling a narrative that the CEO’s actions are damaging the automaker’s consumer appeal. However, U.S. sales data suggest that demand for Tesla’s core vehicles has remained remarkably resilient.
Based on Kelley Blue Book’s Q4 2025 U.S. Electric Vehicle Sales Report, Tesla’s most expensive offerings such as the Tesla Cybertruck, Model S, and Model X, all saw steep declines in 2025. This suggests that mainstream EV buyers might have had a price issue with Tesla’s more expensive offerings, not an Elon Musk issue.
Ultimately, despite broader EV market softness, with total U.S. EV sales slipping about 2% year-to-date, Tesla still accounted for 58.9% of all EV deliveries in 2025, according to the report. This means that out of every ten EVs sold in the United States in 2025, more than half of them were Teslas.
News
Tesla Model 3 and Model Y earn Euro NCAP Best in Class safety awards
“The company’s best-selling Model Y proved the gold standard for small SUVs,” Euro NCAP noted.
Tesla won dual categories in the Euro NCAP Best in Class awards, with the Model 3 being named the safest Large Family Car and the Model Y being recognized as the safest Small SUV.
The feat was highlighted by Tesla Europe & Middle East in a post on its official account on social media platform X.
Model 3 and Model Y lead their respective segments
As per a press release from the Euro NCAP, the organization’s Best in Class designation is based on a weighted assessment of four key areas: Adult Occupant, Child Occupant, Vulnerable Road User, and Safety Assist. Only vehicles that achieved a 5-star Euro NCAP rating and were evaluated with standard safety equipment are eligible for the award.
Euro NCAP noted that the updated Tesla Model 3 performed particularly well in Child Occupant protection, while its Safety Assist score reflected Tesla’s ongoing improvements to driver-assistance systems. The Model Y similarly stood out in Child Occupant protection and Safety Assist, reinforcing Tesla’s dual-category win.
“The company’s best-selling Model Y proved the gold standard for small SUVs,” Euro NCAP noted.
Euro NCAP leadership shares insights
Euro NCAP Secretary General Dr. Michiel van Ratingen said the organization’s Best in Class awards are designed to help consumers identify the safest vehicles over the past year.
Van Ratingen noted that 2025 was Euro NCAP’s busiest year to date, with more vehicles tested than ever before, amid a growing variety of electric cars and increasingly sophisticated safety systems. While the Mercedes-Benz CLA ultimately earned the title of Best Performer of 2025, he emphasized that Tesla finished only fractionally behind in the overall rankings.
“It was a close-run competition,” van Ratingen said. “Tesla was only fractionally behind, and new entrants like firefly and Leapmotor show how global competition continues to grow, which can only be a good thing for consumers who value safety as much as style, practicality, driving performance, and running costs from their next car.”

