Connect with us

News

Rocket Lab briefly catches Electron booster with a helicopter on first try

Published

on

In a significant achievement, public launch provider Rocket Lab has – with a few caveats – successfully used a helicopter to catch the booster of its Electron rocket out of mid-air on the very first attempt.

The company began working on ways to recover and reuse the booster of its tiny Electron rocket in 2019, going back on a promise repeatedly made by founder and CEO Peter Beck in the years prior. Due to just how small the Electron rocket is, it was generally assumed that Beck wasn’t wrong to avoid attempting to recover or reuse its parts of it. However, that attitude quickly changed when the need to ramp up launch cadence became a leading priority. Soon after, Beck revealed that Rocket Lab engineers had looked more carefully at the problem and concluded that Electron booster recovery was more feasible than assumed.

Once the problem was no longer deemed insurmountable, the allure of reuse – intrinsically multiplying the effectiveness of any given production line if done right – was irresistible.

Catching a rocket booster out of mid-air has never looked easier. (Rocket Lab)

While the change in attitude made Rocket Lab the second company after SpaceX to begin seriously developing the ability to recover and reuse orbital-class liquid rocket boosters, the approach it would need to take for a rocket as small as Electron was almost nothing like that used by Falcon boosters. Instead of multiple in-flight engine ignitions, supersonic retropropulsion, steerable fins, and a propulsive landing, Electron would rely on several parachutes to slow itself down, use small thrusters (not unlike Falcon) for attitude control, and be actively captured out of mid-air by a crewed helicopter.

Ironically, demonstrating the sheer size gap between Electron and Falcon 9, Electron booster recovery more closely resembles Falcon 9 fairing recovery. Weighing in at around one ton (~2200 lb) per half, or about as heavy as an entire Electron rocket booster, each fairing half mainly just controls its attitude with cold-gas thrusters while passively reentering Earth’s atmosphere. Fairing halves then deploy a GPS-guided parafoil and gently splash down on the ocean surface before being fished out of the water by a waiting ship.

That is exactly how Rocket Lab trialed Electron recovery on several prior attempts, fishing intact boosters out of the Pacific Ocean after gentle ocean landings. For a while, SpaceX even attempted to catch fairings out of mid-air – albeit with a highly-modified ship and net instead of a helicopter and hook. However, when the company realized it could easily reuse fairing halves that landed in the ocean, it fully abandoned catch attempts.

In Electron’s case, it’s no surprise that Rocket Lab still pursued catch-based recovery while SpaceX was simultaneously giving up on the practice. Put simply, it would be incredibly difficult to reliably and affordably reuse a liquid rocket booster – and liquid rocket engines especially – after dunking them in saltwater.

That’s also why the success of Rocket Lab’s first operational catch attempt has caveats. While the company did successfully catch the booster out of mid-air, the pilot – who holds final authority for the sake of safety – observed unusual behavior not seen during testing after hooking Electron and chose to release the booster early. Thankfully, it still managed a soft landing in the ocean and was recovered by ship, but despite statements from Beck to the contrary, that seawater exposure will almost certainly make it impossible to fully reuse. To call the attempt a total success, the helicopter would have needed to drop the booster off on the recovery ship’s deck, fully avoiding a bath.

Above all else, even if the catch didn’t last, Rocket Lab successfully launched 34 small satellites and payloads into orbit for several paying customers and briefly caught the booster that launched them with a helicopter. The attempt was arguably far more successful than not and likely leaves Rocket Lab just a little more practice and a few small optimizations away from a perfect recovery. Then the company can shift its focus to the next goal: the first Electron booster reuse.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla lands massive deal to expand charging for heavy-duty electric trucks

Published

on

Credit: Tesla Semi/X

Tesla has landed a massive deal to expand its charging infrastructure for heavy-duty electric trucks — and not just theirs, but all manufacturers.

Tesla entered an agreement with Pilot Travel Centers, the largest operator of travel centers in the United States. Tesla’s Semi Chargers, which are used to charge Class 8 electric trucks, will be responsible for providing energy to various vehicles from a variety of manufacturers.

The first sites are expected to open later this Summer, and will be built at select locations along I-5 and I-10, major routes for commercial vehicles and significant logistics companies. The chargers will be available in California, Georgia, Nevada, New Mexico, and Texas.

Each station will have between four and eight chargers, delivering up to 1.2 megawatts of power at each stall.

The project is the latest in Tesla’s plans to expand Semi Charging availability. The effort is being put forth to create more opportunities for the development of sustainable logistics.

Senior Vice President of Alternative Fuels at Pilot, Shannon Sturgil, said:

“Helping to shape the future of energy is a strategic pillar in meeting the needs of our guests and the North American transportation industry. Heavy-duty charging is yet another extension of our exploration into alternative fuel offerings, and we’re happy to partner with a leader in the space that provides turnkey solutions and deploys them quickly.”

Tesla currently has 46 public Semi Charger sites in progress or planned across the United States, mostly positioned along major trucking routes and industrial areas. Perhaps the biggest bottleneck with owning an EV early on was charging availability, and that is no different with electric Class 8 trucks. They simply need an area to charge.

Tesla is spearheading the effort to expand Semicharging availability, and the latest partnership with Pilot shows the company has allies in the program.

The company plans to build 50,000 units of the Tesla Semi in the coming years, and with early adopters like PepsiCo, DHL, and others already contributing millions of miles of data, fleets are going to need reliable public charging.

Tesla is partnering with other companies for the development of the Semi program, most notably, a conglomeration with Uber was announced last year.

Tesla lands new partnership with Uber as Semi takes center stage

The ride-sharing platform plans to launch the Dedicated EV Fleet Accelerator Program, which it calls a “first-of-its-kind buyer’s program designed to make electric freight more affordable and accessible by addressing key adoption barriers.”

The Semi is one of several projects that will take Tesla into a completely different realm. Along with Optimus and its growing Energy division, the Semi will expand Tesla to new heights, and its prioritization of charging infrastructure.

Continue Reading

Elon Musk

Elon Musk’s Boring Company opens Vegas Loop’s newest station

The Fontainebleau is the latest resort on the Las Vegas Strip to embrace the tunneling startup’s underground transportation system.

Published

on

Credit: The Boring Company/X

Elon Musk’s tunneling startup, The Boring Company, has welcomed its newest Vegas Loop station at the Fontainebleau Las Vegas.

The Fontainebleau is the latest resort on the Las Vegas Strip to embrace the tunneling startup’s underground transportation system.

Fontainebleau Loop station

The new Vegas Loop station is located on level V-1 of the Fontainebleau’s south valet area, as noted in a report from the Las Vegas Review-Journal. According to the resort, guests will be able to travel free of charge to the stations serving the Las Vegas Convention Center, as well as to Loop stations in Encore and Westgate.

The Fontainebleau station connects to the Riviera Station, which is located in the northwest parking lot of the convention center’s West Hall. From there, passengers will be able to access the greater Vegas Loop.

Vegas Loop expansion

In December, The Boring Company began offering Vegas Loop rides to and from Harry Reid International Airport. Those trips include a limited above-ground segment, following approval from the Nevada Transportation Authority to allow surface street travel tied to Loop operations.

Under the approval, airport rides are limited to no more than four miles of surface street travel, and each trip must include a tunnel segment. The Vegas Loop currently includes more than 10 miles of tunnels. From this number, about four miles of tunnels are operational.

The Boring Company President Steve Davis previously told the Review-Journal that the University Center Loop segment, which is currently under construction, is expected to open in the first quarter of 2026. That extension would allow Loop vehicles to travel beneath Paradise Road between the convention center and the airport, with a planned station located just north of Tropicana Avenue.

Continue Reading

News

Tesla leases new 108k-sq ft R&D facility near Fremont Factory

The lease adds to Tesla’s presence near its primary California manufacturing hub as the company continues investing in autonomy and artificial intelligence.

Published

on

Credit: Tesla

Tesla has expanded its footprint near its Fremont Factory by leasing a 108,000-square-foot R&D facility in the East Bay. 

The lease adds to Tesla’s presence near its primary California manufacturing hub as the company continues investing in autonomy and artificial intelligence.

A new Fremont lease

Tesla will occupy the entire building at 45401 Research Ave. in Fremont, as per real estate services firm Colliers. The transaction stands as the second-largest R&D lease of the fourth quarter, trailing only a roughly 115,000-square-foot transaction by Figure AI in San Jose.

As noted in a Silicon Valley Business Journal report, Tesla’s new Fremont lease was completed with landlord Lincoln Property Co., which owns the facility. Colliers stated that Tesla’s Fremont expansion reflects continued demand from established technology companies that are seeking space for engineering, testing, and specialized manufacturing.

Tesla has not disclosed which of its business units will be occupying the building, though Colliers has described the property as suitable for office and R&D functions. Tesla has not issued a comment about its new Fremont lease as of writing.

AI investments

Silicon Valley remains a key region for automakers as vehicles increasingly rely on software, artificial intelligence, and advanced electronics. Erin Keating, senior director of economics and industry insights at Cox Automotive, has stated that Tesla is among the most aggressive auto companies when it comes to software-driven vehicle development.

Other automakers have also expanded their presence in the area. Rivian operates an autonomy and core technology hub in Palo Alto, while GM maintains an AI center of excellence in Mountain View. Toyota is also relocating its software and autonomy unit to a newly upgraded property in Santa Clara.

Despite these expansions, Colliers has noted that Silicon Valley posted nearly 444,000 square feet of net occupancy losses in Q4 2025, pushing overall vacancy to 11.2%.

Advertisement
Continue Reading