News
Rocket Lab briefly catches Electron booster with a helicopter on first try
In a significant achievement, public launch provider Rocket Lab has – with a few caveats – successfully used a helicopter to catch the booster of its Electron rocket out of mid-air on the very first attempt.
The company began working on ways to recover and reuse the booster of its tiny Electron rocket in 2019, going back on a promise repeatedly made by founder and CEO Peter Beck in the years prior. Due to just how small the Electron rocket is, it was generally assumed that Beck wasn’t wrong to avoid attempting to recover or reuse its parts of it. However, that attitude quickly changed when the need to ramp up launch cadence became a leading priority. Soon after, Beck revealed that Rocket Lab engineers had looked more carefully at the problem and concluded that Electron booster recovery was more feasible than assumed.
Once the problem was no longer deemed insurmountable, the allure of reuse – intrinsically multiplying the effectiveness of any given production line if done right – was irresistible.

While the change in attitude made Rocket Lab the second company after SpaceX to begin seriously developing the ability to recover and reuse orbital-class liquid rocket boosters, the approach it would need to take for a rocket as small as Electron was almost nothing like that used by Falcon boosters. Instead of multiple in-flight engine ignitions, supersonic retropropulsion, steerable fins, and a propulsive landing, Electron would rely on several parachutes to slow itself down, use small thrusters (not unlike Falcon) for attitude control, and be actively captured out of mid-air by a crewed helicopter.
Ironically, demonstrating the sheer size gap between Electron and Falcon 9, Electron booster recovery more closely resembles Falcon 9 fairing recovery. Weighing in at around one ton (~2200 lb) per half, or about as heavy as an entire Electron rocket booster, each fairing half mainly just controls its attitude with cold-gas thrusters while passively reentering Earth’s atmosphere. Fairing halves then deploy a GPS-guided parafoil and gently splash down on the ocean surface before being fished out of the water by a waiting ship.
That is exactly how Rocket Lab trialed Electron recovery on several prior attempts, fishing intact boosters out of the Pacific Ocean after gentle ocean landings. For a while, SpaceX even attempted to catch fairings out of mid-air – albeit with a highly-modified ship and net instead of a helicopter and hook. However, when the company realized it could easily reuse fairing halves that landed in the ocean, it fully abandoned catch attempts.
In Electron’s case, it’s no surprise that Rocket Lab still pursued catch-based recovery while SpaceX was simultaneously giving up on the practice. Put simply, it would be incredibly difficult to reliably and affordably reuse a liquid rocket booster – and liquid rocket engines especially – after dunking them in saltwater.
That’s also why the success of Rocket Lab’s first operational catch attempt has caveats. While the company did successfully catch the booster out of mid-air, the pilot – who holds final authority for the sake of safety – observed unusual behavior not seen during testing after hooking Electron and chose to release the booster early. Thankfully, it still managed a soft landing in the ocean and was recovered by ship, but despite statements from Beck to the contrary, that seawater exposure will almost certainly make it impossible to fully reuse. To call the attempt a total success, the helicopter would have needed to drop the booster off on the recovery ship’s deck, fully avoiding a bath.
Above all else, even if the catch didn’t last, Rocket Lab successfully launched 34 small satellites and payloads into orbit for several paying customers and briefly caught the booster that launched them with a helicopter. The attempt was arguably far more successful than not and likely leaves Rocket Lab just a little more practice and a few small optimizations away from a perfect recovery. Then the company can shift its focus to the next goal: the first Electron booster reuse.
Cybertruck
Tesla updates Cybertruck owners about key Powershare feature
Tesla is updating Cybertruck owners on its timeline of a massive feature that has yet to ship: Powershare with Powerwall.
Powershare is a bidirectional charging feature exclusive to Cybertruck, which allows the vehicle’s battery to act as a portable power source for homes, appliances, tools, other EVs, and more. It was announced in late 2023 as part of Tesla’s push into vehicle-to-everything energy sharing, and acting as a giant portable charger is the main advantage, as it can provide backup power during outages.
Cybertruck’s Powershare system supports both vehicle-to-load (V2L) and vehicle-to-home (V2H), making it flexible and well-rounded for a variety of applications.
However, even though the feature was promised with Cybertruck, it has yet to be shipped to vehicles. Tesla communicated with owners through email recently regarding Powershare with Powerwall, which essentially has the pickup act as an extended battery.
Powerwall discharge would be prioritized before tapping into the truck’s larger pack.
However, Tesla is still working on getting the feature out to owners, an email said:
“We’re writing to let you know that the Powershare with Powerwall feature is still in development and is now scheduled for release in mid-2026.
This new release date gives us additional time to design and test this feature, ensuring its ability to communicate and optimize energy sharing between your vehicle and many configurations and generations of Powerwall. We are also using this time to develop additional Powershare features that will help us continue to accelerate the world’s transition to sustainable energy.”
Owners have expressed some real disappointment in Tesla’s continuous delays in releasing the feature, as it was expected to be released by late 2024, but now has been pushed back several times to mid-2026, according to the email.
Foundation Series Cybertruck buyers paid extra, expecting the feature to be rolled out with their vehicle upon pickup.
Cybertruck’s Lead Engineer, Wes Morrill, even commented on the holdup:
As a Cybertruck owner who also has Powerwall, I empathize with the disappointed comments.
To their credit, the team has delivered powershare functionality to Cybertruck customers who otherwise have no backup with development of the powershare gateway. As well as those with solar…
— Wes (@wmorrill3) December 12, 2025
He said that “it turned out to be much harder than anticipated to make powershare work seamlessly with existing Powerwalls through existing wall connectors. Two grid-forming devices need to negotiate who will form and who will follow, depending on the state of charge of each, and they need to do this without a network and through multiple generations of hardware, and test and validate this process through rigorous certifications to ensure grid safety.”
It’s nice to see the transparency, but it is justified for some Cybertruck owners to feel like they’ve been bait-and-switched.
News
Tesla’s northernmost Supercharger in North America opens
Tesla has opened its northernmost Supercharger in Fairbanks, Alaska, with eight V4 stalls located in one of the most frigid cities in the U.S.
Located just 196 miles from the Arctic Circle, Fairbanks’s average temperature for the week was around -12 degrees Fahrenheit. However, there are plenty of Tesla owners in Alaska who have been waiting for more charging options out in public.
There are only 36 total Supercharger stalls in Alaska, despite being the largest state in the U.S.
Eight Superchargers were added to Fairbanks, which will eventually be a 48-stall station. Tesla announced its activation today:
North America’s northernmost Supercharger Fairbanks, AK (8 stalls) opened to public. https://t.co/M4l04DZ6B5 pic.twitter.com/zyL6bDuA93
— Tesla Charging (@TeslaCharging) December 12, 2025
The base price per kWh is $0.43 at the Fairbanks Supercharger. Thanks to its V4 capabilities, it can charge at speeds up to 325 kW.
Despite being the northernmost Supercharger in North America, it is not even in the Top 5 northernmost Superchargers globally, because Alaska is south of Norway. The northernmost Supercharger is in Honningsvåg, Norway. All of the Top 5 are in the Scandanavian country.
Tesla’s Supercharger expansion in 2025 has been impressive, and although it experienced some early-quarter slowdowns due to V3-to-V4 hardware transitions, it has been the company’s strongest year for deployments.
🚨🚨 Tesla Supercharging had a HUGE year, and they deserve to be recognized.
🍔 Opened Tesla Diner, a drive-in movie theater with awesome, Chef-curated cuisine
🔌 Gave access to Superchargers to several EV makers, including Hyundai, Genesis, Mercedes-Benz, Kia, Lucid, Toyota,… pic.twitter.com/yYT2QEbqoW
— TESLARATI (@Teslarati) December 10, 2025
Through the three quarters of 2025, the company has added 7,753 stations and 73,817 stalls across the world, a 16 percent increase in stations and an 18 percent increase in stalls compared to last year.
Tesla is on track to add over 12,000 stalls for the full year, achieving an average of one new stall every hour, an impressive statistic.
Recently, the company wrapped up construction at its Supercharger Oasis in Lost Hills, California, a 168-stall Supercharger that Tesla Solar Panels completely power. It is the largest Supercharger in the world.
News
Tesla shocks with latest Robotaxi testing move
Why Tesla has chosen to use a couple of Model S units must have a reason; the company is calculated in its engineering and data collection efforts, so this is definitely more than “we just felt like giving our drivers a change of scenery.”
Tesla Model S vehicles were spotted performing validation testing with LiDAR rigs in California today, a pretty big switch-up compared to what we are used to seeing on the roads.
Tesla utilizes the Model Y crossover for its Robotaxi fleet. It is adequately sized, the most popular vehicle in its lineup, and is suitable for a wide variety of applications. It provides enough luxury for a single rider, but enough room for several passengers, if needed.
However, the testing has seemingly expanded to one of Tesla’s premium flagship offerings, as the Model S was spotted with the validation equipment that is seen entirely with Model Y vehicles. We have written several articles on Robotaxi testing mules being spotted across the United States, but this is a first:
🚨 Tesla is using Model S vehicles fitted with LiDAR rigs to validate FSD and Robotaxi, differing from the Model Ys that it uses typically
Those Model Y vehicles have been on the East Coast for some time. These Model S cars were spotted in California https://t.co/CN9Bw5Wma8 pic.twitter.com/UE55hx5mdd
— TESLARATI (@Teslarati) December 11, 2025
Why Tesla has chosen to use a couple of Model S units must have a reason; the company is calculated in its engineering and data collection efforts, so this is definitely more than “we just felt like giving our drivers a change of scenery.”
It seems to hint that Tesla could add a premium, more luxury offering to its Robotaxi platform eventually. Think about it: Uber has Uber Black, Lyft has Lyft Black. These vehicles and services are associated with a more premium cost as they combine luxury models with more catered transportation options.
Tesla could be testing the waters here, and it could be thinking of adding the Model S to its fleet of ride-hailing vehicles.
Reluctant to remove the Model S from its production plans completely despite its low volume contributions to the overall mission of transitioning the world to sustainable energy, the flagship sedan has always meant something. CEO Elon Musk referred to it, along with its sibling Model X, as continuing on production lines due to “sentimental reasons.”
However, its purpose might have been expanded to justify keeping it around, and why not? It is a cozy, premium offering, and it would be great for those who want a little more luxury and are willing to pay a few extra dollars.
Of course, none of this is even close to confirmed. However, it is reasonable to speculate that the Model S could be a potential addition to the Robotaxi fleet. It’s capable of all the same things the Model Y is, but with more luxuriousness, and it could be the perfect addition to the futuristic fleet.