News
Self-driving Teslas and autonomous vehicles will end traffic as we know it
We are all fascinated with autonomous driving in terms of what it can do for us. Make the elderly mobile again without endangering the rest of us with their arguably reduced reaction times, less acute hearing and vision. We dream of the day when we can sleep through a long, boring trip. Doing valuable work in what would otherwise be dead time is a plus too. One thing we haven’t talked about too much is how autonomous cars can radically reduce the congestion of our roads.
Six Inches of Separation (With All Due Respect to Kevin Bacon)
One way we can reduce highway congestion is to reduce the following distances between cars. It takes a human about four seconds to react to a car stopping ahead of us. At 60 mph, that translates to 88 feet per second or a total traveled of 352 feet before you are really starting to stop the car. Using the 2 1/2 second rule would yield 220 feet. Now if you have a car which reacts in, oh say, 1,000 nanoseconds, or a millionth of a second, some have argued that a six inch separation would be more than enough time for the computer to stop the car in time to avoid a collision. So, a non-autonomous car would take up about 220 feet of roadway per car, autonomous cars would take up roughly 20 feet per car. 220 divided by 20 yields about 11 cars per 220 feet of roadway rather than one. You’ve magically increased the carrying capacity which decreases congestion.
Platooning
This increased use of autonomy will almost certainly create “platooning” on our roads where cars headed in the same direction are pulled up within inches of the car ahead creating a “car train” of 30, 50, or more cars all traveling at high speed to a destination ahead of them. With level 5 autonomy, some have suggested that 90 mph is reasonable while remaining very safe.
So let’s do a mind experiment here. You have a 220 foot stretch of roadway which can now safely carry 1 car traveling at 60 mph. Let’s put in a platoon of 11 cars traveling at 90 mph. That 220 foot stretch of roadway at 90 mph can carry 15 cars rather than 11 because 90 is 150% of 60. You have now increased the carrying capacity of the roadway by 1500%, or put another way, it would be like the New York State Thruway had 1/15 the cars on it that it does now. Rush hour would be like driving at three in the morning.
You may say that 220 feet is a preposterous amount of road and that people routinely travel only 10 to 20 feet behind the car in front of them. My response is look at the accident statistics. Yeah, you can travel that close. You just can’t travel that close safely.
Goose it Man!
One of the arguments against high speed travel in cars has been that as you increase speed, miles per kilowatt drop radically. Wind resistance is the big thief of range. When you read about people who manage to get ridiculous miles per charge out of their Teslas you can bet that last dollar that they are driving slowly!
Here’s where we can take a lesson from NASCAR and…wait for it, GEESE! Any fan of NASCAR knows that the drivers “draft” the car in front of them to save gas. The reason is very simple. The car in front is pushing the air out of the way, and the car behind benefits from traveling at the same speed in a partial vacuum, enabling the following driver to save fuel and possibly avoid a pit stop.
Why am I talking about geese? Ever wonder why geese travel in that cool V-formation? Similar reason. They avoid the turbulence from the goose ahead and conserve energy. Being cooperative sorts they trade places with the leader, who drops back and lets the next goose in line take over the toughest place, which is the lead. That way all the geese get to where they’re going quicker and with less fatigue. In our terms, with less battery energy expended.
I foresee platooning supplemented with leader “dropback” like the geese, let’s say, every five miles, to enable very fast driving times with lower fuel/kilowatt hour consumption. This will become part of the autonomous software suite.
So, all hail the goose, and I, for one, look forward to autonomous driving because of the effect platooning will have on our drives, and the automatic increase of the carrying capacity of our roads. Cool, very cool!
Allan Honeyman
(Submitted via email to the Teslarati Network. Do you a post you’d like to share? Email it to us at info@teslarati.com)
News
Tesla Full Self-Driving (FSD) testing gains major ground in Spain
Based on information posted by the Dirección General de Tráfico (DGT), it appears that Tesla is already busy testing FSD in the country.
Tesla’s Full Self-Driving (Supervised) program is accelerating across Europe, with Spain emerging as a key testing hub under the country’s new ES-AV framework program.
Based on information posted by the Dirección General de Tráfico (DGT), it appears that Tesla is already busy testing FSD in the country.
Spain’s ES-AV framework
Spain’s DGT launched the ES-AV Program in July 2025 to standardize testing for automated vehicles from prototypes to pre-homologation stages. The DGT described the purpose of the program on its official website.
“The program is designed to complement and enhance oversight, regulation, research, and transparency efforts, as well as to support innovation and advancements in automotive technology and industry. This framework also aims to capitalize on the opportunity to position Spain as a pioneer and leader in automated vehicle technology, seeking to provide solutions that help overcome or alleviate certain shortcomings or negative externalities of the current transportation system,” the DGT wrote.
The program identifies three testing phases based on technological maturity and the scope of a company’s operations. Each phase has a set of minimum eligibility requirements, and applicants must indicate which phase they wish to participate in, at least based on their specific technological development.

Tesla FSD tests
As noted by Tesla watcher Kees Roelandschap on X, the DGT’s new framework effectively gives the green flight for nationwide FSD testing. So far, Tesla Spain has a total of 19 vehicles authorized to test FSD on the country’s roads, though it would not be surprising if this fleet grows in the coming months.
The start date for the program is listed at November 27, 2025 to November 26, 2027. The DGT also noted that unlimited FSD tests could be done across Spain on any national route. And since Tesla is already in Phase 3 of the ES-AV Program, onboard safety operators are optional. Remote monitoring would also be allowed.
Tesla’s FSD tests in Spain could help the company gain a lot of real-world data on the country’s roads. Considering the scope of tests that are allowed for the electric vehicle maker, it seems like Spain would be one of the European countries that would be friendly to FSD’s operations. So far, Tesla’s FSD push in Europe is notable, with the company holding FSD demonstrations in Germany, France, and Italy. Tesla is also pushing for national approval in the Netherlands in early 2026.
News
Tesla FSD V14.2.1 is earning rave reviews from users in diverse conditions
Tesla’s Full Self-Driving (Supervised) software continues its rapid evolution, with the latest V14.2.1 update drawing widespread praise.
Tesla’s Full Self-Driving (Supervised) software continues its rapid evolution, with the latest V14.2.1 update drawing widespread praise for its smoother performance and smarter decision-making.
Videos and firsthand accounts from Tesla owners highlight V14.2.1 as an update that improves navigation responsiveness, sign recognition, and overall fluidity, among other things. Some drivers have even described it as “more alive than ever,” hinting at the system eventually feeling “sentient,” as Elon Musk has predicted.
FSD V14.2.1 first impressions
Early adopters are buzzing about how V14.2.1 feels less intrusive while staying vigilant. In a post shared on X, Tesla owner @LactoseLunatic described the update as a “huge leap forward,” adding that the system remains “incredibly assertive but still safe.”
Another Tesla driver, Devin Olsenn, who logged ~600 km on V14.2.1, reported no safety disengagements, with the car feeling “more alive than ever.” The Tesla owner noted that his wife now defaults to using FSD V14, as the system is already very smooth and refined.
Adverse weather and regulatory zones are testing grounds where V14.2.1 shines, at least according to testers in snow areas. Tesla watcher Sawyer Merritt shared a video of his first snowy drive on unplowed rural roads in New Hampshire, where FSD did great and erred on the side of caution. As per Merritt, FSD V14.2.1 was “extra cautious” but it performed well overall.
Sign recognition and freeway prowess
Sign recognition also seemed to show improvements with FSD V14.2.1. Longtime FSD tester Chuck Cook highlighted a clip from his upcoming first-impressions video, showcasing improved school zone behavior. “I think it read the signs better,” he observed, though in standard mode, it didn’t fully drop to 15 mph within the short timeframe. This nuance points to V14.2.1’s growing awareness of temporal rules, a step toward fewer false positives in dynamic environments.
FSD V14.2.1 also seems to excel in high-stress highway scenarios. Fellow FSD tester @BLKMDL3 posted a video of FSD V14.2.1 managing a multi-lane freeway closure due to a police chase-related accident. “Perfectly handles all lanes of the freeway merging into one,” the Tesla owner noted in his post on X.
FSD V14.2.1 was released on Thanksgiving, much to the pleasant surprise of Tesla owners. The update’s release notes are almost identical to the system’s previous iteration, save for one line item read, “Camera visibility can lead to increased attention monitoring sensitivity.”
News
Tesla FSD Supervised ride-alongs in Europe begin in Italy, France, and Germany
The program allows the public to hop in as a non-driving observer to witness FSD navigate urban streets firsthand.
Tesla has kicked off passenger ride-alongs for Full Self-Driving (Supervised) in Italy, France and Germany. The program allows the public to hop in as a non-driving observer to witness FSD navigate urban streets firsthand.
The program, detailed on Tesla’s event pages, arrives ahead of a potential early 2026 Dutch regulatory approval that could unlock a potential EU-wide rollout for FSD.
Hands-Off Demos
Tesla’s ride-along invites participants to “ride along in the passenger seat to experience how it handles real-world traffic & the most stressful parts of daily driving, making the roads safer for all,” as per the company’s announcement on X through its official Tesla Europe & Middle East account.
Sign-ups via localized pages offer free slots through December, with Tesla teams piloting vehicles through city streets, roundabouts and highways.
“Be one of the first to experience Full Self-Driving (Supervised) from the passenger seat. Our team will take you along as a passenger and show you how Full Self-Driving (Supervised) works under real-world road conditions,” Tesla wrote. “Discover how it reacts to live traffic and masters the most stressful parts of driving to make the roads safer for you and others. Come join us to learn how we are moving closer to a fully autonomous future.”
Building trust towards an FSD Unsupervised rollout
Tesla’s FSD (Supervised) ride-alongs could be an effective tool to build trust and get regular car buyers and commuters used to the idea of vehicles driving themselves. By seating riders shotgun, Tesla could provide participants with a front row seat to the bleeding edge of consumer-grade driverless systems.
FSD (Supervised) has already been rolled out to several countries, such as the United States, Canada, Australia, New Zealand, and partially in China. So far, FSD (Supervised) has been received positively by drivers, as it really makes driving tasks and long trips significantly easier and more pleasant.
FSD is a key safety feature as well, which became all too evident when a Tesla driving on FSD was hit by what seemed to be a meteorite in Australia. The vehicle moved safely despite the impact, though the same would likely not be true had the car been driven manually.
