Connect with us

News

SF Motors set sights on EV mass production with latest R&D testing facility

Published

on

Santa Clara based electric vehicle startup SF Motors is opening up a new full-scale R&D center in Silicon Valley. SF Motors was founded in January 2016 after a large investment from Sokon Motors, a large Chinese automotive company. The company’s new 130,000 sqft research and development facility will be located in Milpitas, CA, roughly 6 miles away from SF’s headquarters.

The new facility, which is expected to be completed in Q4 ’18, will be capable of “small batch” manufacturing and development of manufacturing processes. The company is focusing on battery, powertrain, and autonomous vehicle development at the facility.

“Adding to our existing R&D labs, this new facility will conduct extensive design validation testing and small-scale manufacturing necessary to ensure a smooth transition to mass production of our batteries and electric powertrains, which are key components of our vehicles,” said SF Motors CTO Yifan Tang.

Yifan Tang joined SF Motors in February 2017. He was previously the technical lead on Facebook’s high-altitude long-range aircraft aimed at beaming internet across the globe. Before Facebook, Tang was VP of Drivetrain Engineering at Lucid Motors for three years and Principal Motor Technologist at Tesla for five years. During his time at Tesla Tang designed the motors for the Roadster, Model S, Mercedes B-Class/Toyota Rav4, and the prototype Model X AWD. Tang has a Ph.D. in electrical engineering from The Ohio State University and 35 U.S. patents.

Advertisement

In October 2017 SF Motors acquired Tesla co-founder Martin Eberhard’s battery module startup evINIT for $33M. Eberhard is now Chief Strategy Officer at SF Motors and the former CEO of evINIT, Mike Miskovsky, is Chief Development Officer. Eberhard served as the CEO of Tesla in its early years until late 2007.

Closing the loop from R&D to Manufacturing

SF Motors’ CTO Yifan Tang tells Teslarati that the new facility will help “close the loop from R&D to manufacturing,” and help accelerate the company to mass production. Tang describes the new facility as a key part of SF Motors strategy as they push forward to mass production.

According to SF Motors, the company is already prepping manufacturing facilities in the U.S. and China. SF Motors purchased a 675,000 sqft plant in Indiana from AM General in November 2017. The company also has a massive factory in Chongqing, China, with nearly 8.4M sqft of manufacturing space that’s capable of producing 200,000 vehicles per year.

SF Motors’ new R&D Facility in Milpitas, California (Photo: Loopnet/McCarthy Creekside
Industrial Center)

SF’s Tang emphasized that the company’s abilities to produce small-batch trial production at their R&D facility will differentiate itself from other automotive manufacturers. The company plans to also produce battery cells at the facility and will test different cell configurations, modules, and battery pack sizes.

SF plans to produce a wide range of vehicles, and the ability to tweak cell chemistry along with module configurations will allow them to produce battery packs that are optimized for cost efficiency and performance.

Advertisement

The new R&D facility will house roughly 100 employees, but its proximity to the company’s headquarters allows the company to shift employees back and forth. “Drawing on our global business model and decades of manufacturing experience, locating this facility near our Silicon Valley headquarters will strategically ensure quality and efficiency as we prepare to bring our intelligent EVs to market,” Tang said in a press release.

SF Motors plans to start trial production of their vehicles at the end of this year.

Update at 10:35 am PT: An earlier version of this article incorrectly stated that SF Motors was a subsidiary of Sokon Motors. Sokon Motors was a large initial investor in SF Motors, but does not wholely own the company. 

Advertisement

Christian Prenzler is currently the VP of Business Development at Teslarati, leading strategic partnerships, content development, email newsletters, and subscription programs. Additionally, Christian thoroughly enjoys investigating pivotal moments in the emerging mobility sector and sharing these stories with Teslarati's readers. He has been closely following and writing on Tesla and disruptive technology for over seven years. You can contact Christian here: christian@teslarati.com

Advertisement
Comments

News

Tesla Cybercab spotted with interesting charging solution, stimulating discussion

The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.

Published

on

Credit: What's Inside | X

Tesla Cybercab units are being tested publicly on roads throughout various areas of the United States, and a recent sighting of the vehicle’s charging port has certainly stimulated some discussions throughout the community.

The Cybercab is geared toward being a fully-autonomous vehicle, void of a steering wheel or pedals, only operating with the use of the Full Self-Driving suite. Everything from the driving itself to the charging to the cleaning is intended to be operated autonomously.

But a recent sighting of the vehicle has incited some speculation as to whether the vehicle might have some manual features, which would make sense, but let’s take a look:

The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.

Advertisement

Now, it is important to remember these are prototype vehicles, and not the final product. Additionally, Tesla has said it plans to introduce wireless induction charging in the future, but it is not currently available, so these units need to have some ability to charge.

However, there are some arguments for a charging system like this, especially as the operation of the Cybercab begins after production starts, which is scheduled for April.

Wireless for Operation, Wired for Downtime

It seems ideal to use induction charging when the Cybercab is in operation. As it is for most Tesla owners taking roadtrips, Supercharging stops are only a few minutes long for the most part.

The Cybercab would benefit from more frequent Supercharging stops in between rides while it is operating a ride-sharing program.

Advertisement

Tesla wireless charging patent revealed ahead of Robotaxi unveiling event

However, when the vehicle rolls back to its hub for cleaning and maintenance, standard charging, where it is plugged into a charger of some kind, seems more ideal.

In the 45-minutes that the car is being cleaned and is having maintenance, it could be fully charged and ready for another full shift of rides, grabbing a few miles of range with induction charging when it’s out and about.

Induction Charging Challenges

Induction charging is still something that presents many challenges for companies that use it for anything, including things as trivial as charging cell phones.

Advertisement

While it is convenient, a lot of the charge is lost during heat transfer, which is something that is common with wireless charging solutions. Even in Teslas, the wireless charging mat present in its vehicles has been a common complaint among owners, so much so that the company recently included a feature to turn them off.

Production Timing and Potential Challenges

With Tesla planning to begin Cybercab production in April, the real challenge with the induction charging is whether the company can develop an effective wireless apparatus in that short time frame.

It has been in development for several years, but solving the issue with heat and energy loss is something that is not an easy task.

In the short-term, Tesla could utilize this port for normal Supercharging operation on the Cybercab. Eventually, it could be phased out as induction charging proves to be a more effective and convenient option.

Advertisement
Continue Reading

News

Tesla confirms that it finally solved its 4680 battery’s dry cathode process

The suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Published

on

tesla 4680
Image used with permission for Teslarati. (Credit: Tom Cross)

Tesla has confirmed that it is now producing both the anode and cathode of its 4680 battery cells using a dry-electrode process, marking a key breakthrough in a technology the company has been working to industrialize for years. 

The update, disclosed in Tesla’s Q4 and FY 2025 update letter, suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Dry cathode 4680 cells

In its Q4 and FY 2025 update letter, Tesla stated that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process. The confirmation addresses long-standing questions around whether Tesla could bring its dry cathode process into sustained production.

The disclosure was highlighted on X by Bonne Eggleston, Tesla’s Vice President of 4680 batteries, who wrote that “both electrodes use our dry process.”

Advertisement

Tesla first introduced the dry-electrode concept during its Battery Day presentation in 2020, pitching it as a way to simplify production, reduce factory footprint, lower costs, and improve energy density. While Tesla has been producing 4680 cells for some time, the company had previously relied on more conventional approaches for parts of the process, leading to questions about whether a full dry-electrode process could even be achieved.

4680 packs for Model Y

Tesla also revealed in its Q4 and FY 2025 Update Letter that it has begun producing battery packs for certain Model Y vehicles using its in-house 4680 cells. As per Tesla: 

“We have begun to produce battery packs for certain Model Ys with our 4680 cells, unlocking an additional vector of supply to help navigate increasingly complex supply chain challenges caused by trade barriers and tariff risks.”

The timing is notable. With Tesla preparing to wind down Model S and Model X production, the Model Y and Model 3 are expected to account for an even larger share of the company’s vehicle output. Ensuring that the Model Y can be equipped with domestically produced 4680 battery packs gives Tesla greater flexibility to maintain production volumes in the United States, even as global battery supply chains face increasing complexity.

Advertisement
Continue Reading

Elon Musk

Tesla Giga Texas to feature massive Optimus V4 production line

This suggests that while the first Optimus line will be set up in the Fremont Factory, the real ramp of Optimus’ production will happen in Giga Texas.

Published

on

Credit: Tesla/YouTube

Tesla will build Optimus 4 in Giga Texas, and its production line will be massive. This was, at least, as per recent comments by CEO Elon Musk on social media platform X.  

Optimus 4 production

In response to a post on X which expressed surprise that Optimus will be produced in California, Musk stated that “Optimus 4 will be built in Texas at much higher volume.” This suggests that while the first Optimus line will be set up in the Fremont Factory, and while the line itself will be capable of producing 1 million humanoid robots per year, the real ramp of Optimus’ production will happen in Giga Texas. 

This was not the first time that Elon Musk shared his plans for Optimus’ production at Gigafactory Texas. During the 2025 Annual Shareholder Meeting, he stated that Giga Texas’ Optimus line will produce 10 million units of the humanoid robot per year. He did not, however, state at the time that Giga Texas would produce Optimus V4. 

“So we’re going to launch on the fastest production ramp of any product of any large complex manufactured product ever, starting with building a one-million-unit production line in Fremont. And that’s Line one. And then a ten million unit per year production line here,” Musk stated. 

Advertisement

How big Optimus could become

During Tesla’s Q4 and FY 2025 earnings call, Musk offered additional context on the potential of Optimus. While he stated that the ramp of Optimus’ production will be deliberate at first, the humanoid robot itself will have the potential to change the world. 

“Optimus really will be a general-purpose robot that can learn by observing human behavior. You can demonstrate a task or verbally describe a task or show it a task. Even show it a video, it will be able to do that task. It’s going to be a very capable robot. I think long-term Optimus will have a very significant impact on the US GDP. 

“It will actually move the needle on US GDP significantly. In conclusion, there are still many who doubt our ambitions for creating amazing abundance. We are confident it can be done, and we are making the right moves technologically to ensure that it does. Tesla, Inc. has never been a company to shy away from solving the hardest problems,” Musk stated. 

Advertisement
Continue Reading