News
“Smart skin” can identify weaknesses in bridges and airplanes using laser scanner
Recent research results have demonstrated that two-dimensional, on-demand mapping of the accumulated strain on metal structures will soon be a reality thanks to an engineered “smart skin” that’s only a fraction of the width of a human hair. By utilizing the unique properties of single-walled carbon nanotubes, a two-layer film airbrushed onto surfaces of bridges, pipelines, and airplanes, among others, can be scanned to reveal weaknesses in near real-time. As a bonus, the technology is barely visible even on a transparent surface, making it that much more flexible as an application.
Stress-inducing events, along with regular wear and tear, can deform structures and machines, affecting their safety and operability. Mechanical strain on structural surfaces provides information on the condition of the materials such as damage location and severity. Existing conventional sensors are only able to measure strain in one point along one axis, but with the smart skin technology, strain detection in any direction or location will be possible.
How “Smart Skin” Technology is Used
In 2002, researchers discovered that single-wall carbon nanotubes fluoresce, i.e., glow brightly when stimulated by a light source. Later, the fluorescence was further found to change color when stretched. This optical property was then considered in the context of metal structures that are subject to strain, specifically to apply the property as a diagnostic tool. To obtain the fluorescent data, researchers applied the smart skin to a testing surface, irradiated the area with a small laser scanner, and captured the resulting nanotube color emissions with an infrared spectrometer. Finally, two-dimensional maps of the accumulated strain were generated with the results.

The primary researchers, Professors Satish Nagarajaiah and Bruce Weisman of Rice University in Texas, have published two scientific papers explaining the methods used for achieving this technology and the results of its proof-of-principle application. As described in the papers, aluminum bars with holes or notches in areas of potential stress were tested with the laser technique to demonstrate the full potential of their invention. The points measured were located 1 millimeter apart, but the researchers stated that the points could be located 20 times closer for even more accurate readings. Standard strain sensors have points located several millimeters apart.
What Are Carbon Nanotubes?
Carbon nanotubes (CNTs) are carbon molecules that have been structurally modified into cylinders, or rather, rolled up sheets of carbon atoms. There has been some evidence suggesting that CNTs can be formed via natural processes such as volcanic events. However, to really capitalize on their unique characteristics, production in a laboratory environment is much more efficient.
Several methods can be used for production, but the most widely used method for synthesizing CNTs is chemical vapor deposition (CVD). This process combines a catalyzing metal with a carbon-containing gas which are heated to approximately 1400 degrees Fahrenheit, triggering the carbon molecules to assemble and grow into nanotubes. The resulting formation resembles a forest or lawn grass, each trunk or blade averaging .43 nanometers in diameter. The length is dependent on variables such as the amount of time spent in the high heat environment.

Besides surface analysis, carbon nanotubes have proven invaluable in many research and commercial arenas, their luminescence being only one of many properties that can improve and enable other technologies. Their mechanical tensile strength is 400 times that of steel while only having one sixth the density, making them very lightweight. CNTs also have highly conductive electrical and thermal properties, are extremely resistant to corrosion, and can be filled with other nanomaterials. All of these advantages open up their applications to include solar cells, sensors, drug delivery, electronic devices and shielding, lithium-ion batteries, body armor, and perhaps even a space elevator, assuming significant advances overcome its hurdles.
Next Steps
The nanotube-laced smart skin is ready for scaling up into real-world applications, but its chosen industry may take time to adopt given the general resistance to change in a field with long-standing existing technology. While awaiting embrace in the arena it was primarily designed for, the smart skin has other potential uses in engineering research applications. Bruce Weisman, also the discoverer of CNT fluorescence, anticipates its advantages being used for testing the design of small-scaled structures and engines prior to deployment. Niche applications like these may be the primary entry point into the market for some time to come. In the meantime, the researchers plan to continue developing their strain reader to capture simultaneous readings from large surfaces.
News
Tesla makes two big interior changes to several Model Y vehicles
Tesla has made two big interior changes to several Model Y vehicles in its lineup, and the changes come just as the new model year begins production.
Last year, Tesla launched the Model Y Standard, which separated the previous models into the “Premium” category. The Standard vehicles lack several features, including more premium interior materials, acoustic-lined glass, and storage.
@teslarati There are some BIG differences between the Tesla Model Y Standard and Tesla Model Y Premium #tesla #teslamodely ♬ Sia – Xeptemper
The Model Y “Premium” trims are now getting several new upgrades, which come after the company launched a seven-seat configuration of the vehicle last night in the North American market for an upcharge of $2,500.
The new Model Y seven-seat configuration did not come with just an additional row of seating; it also came with a slew of other goodies that now come standard and were previously only available on the Model Y Performance, which was launched late last year.
All Black Headliner
The new Tesla Model Y Premium trims will now come standard with a black headliner, something that many owners have been requesting for some time.
The previous grey headliner and trim within the vehicle is now gone; it will be all black on all of the Premium trims from here on out, a welcome change:

Credit: Tesla
Larger and Higher Resolution Center Touchscreen
The center touchscreen in the new Model Y Premium configuration is now larger and has a higher resolution than the previous version.
In last year’s Model Y configurations (apart from the Performance), the center touchscreen was 15.4″. Now, Tesla has decided to go with the 16″ version across all Premium trims, which is a nice step up. It was nice to see this in the Performance, but it is really great to see Tesla include this in the Model Y’s more Premium trim levels.
Tesla Model Y Seven Seater
Tesla launched the latest iteration of the seven-seater for the Model Y on Monday night. Traditionally, the Model Y seats five passengers in total, but there were calls for a more spacious version several years ago.
Tesla released it, but it was extremely tight in the back, basically reserving those back seats for only small people or children.

Credit: Tesla
The new configuration looks to be slightly more spacious in the third row, but not as much space as most would require or want. Instead,
Elon Musk
Lufthansa Group to equip Starlink on its 850-aircraft fleet
Under the collaboration, Lufthansa Group will install Starlink technology on both its existing fleet and all newly delivered aircraft, as noted by the group in a press release.
Lufthansa Group has announced a partnership with Starlink that will bring high-speed internet connectivity to every aircraft across all its carriers.
This means that aircraft across the group’s brands, from Lufthansa, SWISS, and Austrian Airlines to Brussels Airlines, would be able to enjoy high-speed internet access using the industry-leading satellite internet solution.
Starlink in-flight internet
Under the collaboration, Lufthansa Group will install Starlink technology on both its existing fleet and all newly delivered aircraft, as noted by the group in a press release.
Starlink’s low-Earth orbit satellites are expected to provide significantly higher bandwidth and lower latency than traditional in-flight Wi-Fi, which should enable streaming, online work, and other data-intensive applications for passengers during flights.
Starlink-powered internet is expected to be available on the first commercial flights as early as the second half of 2026. The rollout will continue through the decade, with the entire Lufthansa Group fleet scheduled to be fully equipped with Starlink by 2029. Once complete, no other European airline group will operate more Starlink-connected aircraft.
Free high-speed access
As part of the initiative, Lufthansa Group will offer the new high-speed internet free of charge to all status customers and Travel ID users, regardless of cabin class. Chief Commercial Officer Dieter Vranckx shared his expectations for the program.
“In our anniversary year, in which we are celebrating Lufthansa’s 100th birthday, we have decided to introduce a new high-speed internet solution from Starlink for all our airlines. The Lufthansa Group is taking the next step and setting an essential milestone for the premium travel experience of our customers.
“Connectivity on board plays an important role today, and with Starlink, we are not only investing in the best product on the market, but also in the satisfaction of our passengers,” Vranckx said.
Elon Musk
Tesla locks in Elon Musk’s top problem solver as it enters its most ambitious era
The generous equity award was disclosed by the electric vehicle maker in a recent regulatory filing.
Tesla has granted Senior Vice President of Automotive Tom Zhu more than 520,000 stock options, tying a significant portion of his compensation to the company’s long-term performance.
The generous equity award was disclosed by the electric vehicle maker in a recent regulatory filing.
Tesla secures top talent
According to a Form 4 filing with the U.S. Securities and Exchange Commission, Tom Zhu received 520,021 stock options with an exercise price of $435.80 per share. Since the award will not fully vest until March 5, 2031, Zhu must remain at Tesla for more than five years to realize the award’s full benefit.
Considering that Tesla shares are currently trading at around the $445 to $450 per share level, Zhu will really only see gains in his equity award if Tesla’s stock price sees a notable rise over the years, as noted in a Sina Finance report.
Still, even at today’s prices, Zhu’s stock award is already worth over $230 million. If Tesla reaches the market cap targets set forth in Elon Musk’s 2025 CEO Performance Award, Zhu would become a billionaire from this equity award alone.
Tesla’s problem solver
Zhu joined Tesla in April 2014 and initially led the company’s Supercharger rollout in China. Later that year, he assumed the leadership of Tesla’s China business, where he played a central role in Tesla’s localization efforts, including expanding retail and service networks, and later, overseeing the development of Gigafactory Shanghai.
Zhu’s efforts helped transform China into one of Tesla’s most important markets and production hubs. In 2023, Tesla promoted Zhu to Senior Vice President of Automotive, placing him among the company’s core global executives and expanding his influence beyond China. He has since garnered a reputation as the company’s problem solver, being tapped by Elon Musk to help ramp Giga Texas’s vehicle production.
With this in mind, Tesla’s recent filing seems to suggest that the company is locking in its top talent as it enters its newest, most ambitious era to date. As could be seen in the targets of Elon Musk’s 2025 pay package, Tesla is now aiming to be the world’s largest company by market cap, and it is aiming to achieve production levels that are unheard of. Zhu’s talents would definitely be of use in this stage of the company’s growth.