Connect with us

News

SpaceX a big step closer to orbital Starship launches after passing FAA environmental review

Published

on

SpaceX has secured environmental approval from the FAA and relevant federal, state, and local stakeholders to conduct orbital Starship launches on the South Texas coast.

After a relatively normal 12 months of work and half a dozen poorly communicated delays, the FAA has ultimately issued SpaceX an extremely favorable “Mitigated Finding of No Significant Impact” or Mitigated FONSI for its plans to conduct a very limited number of orbital Starship launches per year out of Boca Chica, Texas. With the receipt of that final programmatic environmental assessment (PEA), SpaceX has arguably hurdled the most difficult regulatory barrier for Texas orbital Starship launches and secured itself a foundation upon which it should be able to attempt to expand the scope of Starbase’s long-term utility.

To secure that favorable result, however, SpaceX ultimately agreed to dozens upon dozens of “mitigations” that will take a significant amount of work to complete and maintain in order to partially alleviate some of the launch site’s environmental impact. It’s also far from the last regulatory hurdle standing between SpaceX and orbital Starship launches.

In many ways, Starbase’s Final PEA is a bit simpler than what SpaceX initially requested in its September 2021 draft. As previously discussed, it was already known that SpaceX had withdrawn initial plans to build its own dedicated natural gas power plant, desalination plant, and natural gas refinery and liquefaction facilities at or near the launch site before the draft was finalized. The Final PEA goes a bit further, simplifying SpaceX’s initial request for two “phases” of annual Starship launch operations and settling on a single “operational phase” that allows up to five suborbital and five orbital Starship launches per year.

However, aside from the already expected removal of onsite methane fuel production and all associated facilities, the rest of the Final PEA appears to be surprisingly close – if not outright identical – to SpaceX’s Starbase Draft PEA. Crucially, SpaceX was not forced to reduce the number of permitted orbital launches, suborbital launches, or ship/booster static fire tests it originally pursued. While a maximum of five orbital launches will severely limit Starbase’s utility outside of early flight testing, it’s still a big improvement over a compromise for 1-4 annual launches.

Advertisement
-->
SpaceX’s Draft PEA.
SpaceX’s Final PEA.

Perhaps even more notably, the Final PEA also includes permission for up to 500 hours of highway closures for nominal operations and up to 300 hours of closures for emergency anomaly response per year – exactly what SpaceX requested in its Draft PEA. In 2014, SpaceX completed an even more thorough environmental impact statement (EIS) for Falcon rocket launches out of Boca Chica and received approval for no more than 180 hours of annual closures – a restriction that could have made Starbase virtually unusable as a hub for Starship development.

Of the dozens of mitigations SpaceX will have to implement to conduct Starship launches under its new Starbase PEA, a majority appear to be normal and reasonable. Most focus on specific aspects of things already discussed, like protecting turtles (lighting, beach cleanup, education, nest scouting and monitoring, etc.), safeguarding other protected species, respecting impacted areas of historical importance; ensuring that road closures avoid certain holidays and periods to limit Starbase’s impact on local use of public parks and beaches; and other common-sense extensions of existing rules and regulations. In a few cases, SpaceX has even agreed to deploy solar-powered Starlink internet terminals to enable “enhanced satellite monitoring” of wildlife for the US Fish and Wildlife Service and Peregrine Fund.

Others are oddly specific and read a bit more like local and state agencies taking advantage of their leverage to get SpaceX to manage and pay for basic infrastructure maintenance and improvement that any functional government should already be doing. The lengthy list of odd “mitigations” includes the following:

  • Quarterly beach and highway cleanups
  • Construct at least one highway wildlife crossing
  • Construct a wildlife viewing platform along Highway 4
  • Complete and maintain traffic control fencing demarcating the boundaries of TPWD land along said public highway
  • $5,000 per year to “enhance” the Texas Parks and Wildlife Department’s (TPWD) fishing “Tackle Loaner Program”
  • Prepare a history report on any events and activities of the Mexican War and Civil War that took place in all affected areas of historical importance
  • Fund the development of five signs explaining the “history and significance” of those areas
  • “[Replicate and install] the missing stars and wreaths on the Palmetto Pilings Historical Marker”

Ultimately, the Final PEA SpaceX received is an extremely positive outcome, and there should be little doubt that SpaceX will complete all mitigations requested of it and help improve aspects of Boca Chica, Texas as a result. Up next, SpaceX will need to secure an orbital Starship launch license from the FAA by demonstrating, to the agency’s satisfaction, that it meets “safety, risk, and financial responsibility requirements” in addition to all environmental requirements. The company has already begun that process with the FAA, but it could still take weeks or months after the Final PEA to secure an operator license or experimental permit. Any such license or permit will be conditional upon the completion of all mitigation requirements established by the PEA.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla’s northernmost Supercharger in North America opens

Published

on

Credit: Tesla

Tesla has opened its northernmost Supercharger in Fairbanks, Alaska, with eight V4 stalls located in one of the most frigid cities in the U.S.

Located just 196 miles from the Arctic Circle, Fairbanks’s average temperature for the week was around -12 degrees Fahrenheit. However, there are plenty of Tesla owners in Alaska who have been waiting for more charging options out in public.

There are only 36 total Supercharger stalls in Alaska, despite being the largest state in the U.S.

Eight Superchargers were added to Fairbanks, which will eventually be a 48-stall station. Tesla announced its activation today:

The base price per kWh is $0.43 at the Fairbanks Supercharger. Thanks to its V4 capabilities, it can charge at speeds up to 325 kW.

Despite being the northernmost Supercharger in North America, it is not even in the Top 5 northernmost Superchargers globally, because Alaska is south of Norway. The northernmost Supercharger is in Honningsvåg, Norway. All of the Top 5 are in the Scandanavian country.

Tesla’s Supercharger expansion in 2025 has been impressive, and although it experienced some early-quarter slowdowns due to V3-to-V4 hardware transitions, it has been the company’s strongest year for deployments.

Through the three quarters of 2025, the company has added 7,753 stations and 73,817 stalls across the world, a 16 percent increase in stations and an 18 percent increase in stalls compared to last year.

Tesla is on track to add over 12,000 stalls for the full year, achieving an average of one new stall every hour, an impressive statistic.

Recently, the company wrapped up construction at its Supercharger Oasis in Lost Hills, California, a 168-stall Supercharger that Tesla Solar Panels completely power. It is the largest Supercharger in the world.

Continue Reading

News

Tesla shocks with latest Robotaxi testing move

Why Tesla has chosen to use a couple of Model S units must have a reason; the company is calculated in its engineering and data collection efforts, so this is definitely more than “we just felt like giving our drivers a change of scenery.”

Published

on

Credit: Sawyer Merritt | X

Tesla Model S vehicles were spotted performing validation testing with LiDAR rigs in California today, a pretty big switch-up compared to what we are used to seeing on the roads.

Tesla utilizes the Model Y crossover for its Robotaxi fleet. It is adequately sized, the most popular vehicle in its lineup, and is suitable for a wide variety of applications. It provides enough luxury for a single rider, but enough room for several passengers, if needed.

However, the testing has seemingly expanded to one of Tesla’s premium flagship offerings, as the Model S was spotted with the validation equipment that is seen entirely with Model Y vehicles. We have written several articles on Robotaxi testing mules being spotted across the United States, but this is a first:

Why Tesla has chosen to use a couple of Model S units must have a reason; the company is calculated in its engineering and data collection efforts, so this is definitely more than “we just felt like giving our drivers a change of scenery.”

It seems to hint that Tesla could add a premium, more luxury offering to its Robotaxi platform eventually. Think about it: Uber has Uber Black, Lyft has Lyft Black. These vehicles and services are associated with a more premium cost as they combine luxury models with more catered transportation options.

Tesla could be testing the waters here, and it could be thinking of adding the Model S to its fleet of ride-hailing vehicles.

Reluctant to remove the Model S from its production plans completely despite its low volume contributions to the overall mission of transitioning the world to sustainable energy, the flagship sedan has always meant something. CEO Elon Musk referred to it, along with its sibling Model X, as continuing on production lines due to “sentimental reasons.”

However, its purpose might have been expanded to justify keeping it around, and why not? It is a cozy, premium offering, and it would be great for those who want a little more luxury and are willing to pay a few extra dollars.

Of course, none of this is even close to confirmed. However, it is reasonable to speculate that the Model S could be a potential addition to the Robotaxi fleet. It’s capable of all the same things the Model Y is, but with more luxuriousness, and it could be the perfect addition to the futuristic fleet.

Continue Reading

News

Rivian unveils self-driving chip and autonomy plans to compete with Tesla

Rivian, a mainstay in the world of electric vehicle startups, said it plans to roll out an Autonomy+ subscription and one-time purchase program, priced at $49.99 per month and $2,500 up front, respectively, for access to its self-driving suite.

Published

on

Credit: Rivian

Rivian unveiled its self-driving chip and autonomy plans to compete with Tesla and others at its AI and Autonomy Day on Thursday in Palo Alto, California.

Rivian, a mainstay in the world of electric vehicle startups, said it plans to roll out an Autonomy+ subscription and one-time purchase program, priced at $49.99 per month and $2,500 up front, respectively, for access to its self-driving suite.

CEO RJ Scaringe said it will learn and become more confident and robust as more miles are driven and it gathers more data. This is what Tesla uses through a neural network, as it uses deep learning to improve with every mile traveled.

He said:

“I couldn’t be more excited for the work our teams are driving in autonomy and AI. Our updated hardware platform, which includes our in-house 1600 sparse TOPS inference chip, will enable us to achieve dramatic progress in self-driving to ultimately deliver on our goal of delivering L4. This represents an inflection point for the ownership experience – ultimately being able to give customers their time back when in the car.”

At first, Rivian plans to offer the service to personally-owned vehicles, and not operate as a ride-hailing service. However, ride-sharing is in the plans for the future, he said:

“While our initial focus will be on personally owned vehicles, which today represent a vast majority of the miles to the United States, this also enables us to pursue opportunities in the rideshare space.”

The Hardware

Rivian is not using a vision-only approach as Tesla does, and instead will rely on 11 cameras, five radar sensors, and a single LiDAR that will face forward.

It is also developing a chip in-house, which will be manufactured by TSMC, a supplier of Tesla’s as well. The chip will be known as RAP1 and will be about 50 times as powerful as the chip that is currently in Rivian vehicles. It will also do more than 800 trillion calculations every second.

RAP1 powers the Autonomy Compute Module 3, known as ACM3, which is Rivian’s third-generation autonomy computer.

ACM3 specs include:

  • 1600 sparse INT8 TOPS (Trillion Operations Per Second).
  • The processing power of 5 billion pixels per second.
  • RAP1 features RivLink, a low-latency interconnect technology allowing chips to be connected to multiply processing power, making it inherently extensible.
  • RAP1 is enabled by an in-house developed AI compiler and platform software

As far as LiDAR, Rivian plans to use it in forthcoming R2 cars to enable SAE Level 4 automated driving, which would allow people to sit in the back and, according to the agency’s ratings, “will not require you to take over driving.”

More Details

Rivian said it will also roll out advancements to the second-generation R1 vehicles in the near term with the addition of UHF, or Universal Hands-Free, which will be available on over 3.5 million miles of roadway in the U.S. and Canada.

Rivian will now join the competitive ranks with Tesla, Waymo, Zoox, and others, who are all in the race for autonomy.

Continue Reading