SpaceX has completed its 60th operational Starlink satellite launch after a rare string of scrubs.
Flying for the 6th time just 66 days after its 5th launch, Falcon 9 booster B1067 lifted off with 54 Starlink satellites on SpaceX’s Starlink 4-34 mission at 8:18 pm EDT, Sunday, September 18th. Five days prior, after unknown issues triggered a delay from a planned September 11th launch attempt, SpaceX attempted to launch the mission for the first time on September 13th.
About an hour before liftoff, lightning conditions forced the company to call off the attempt. On September 14th, also about an hour before liftoff, weather forced SpaceX to call off the second attempt. On September 15th, the third attempt was aborted (by weather) just 29 seconds before liftoff, followed by a fourth weather-related scrub about a minute before liftoff on September 16th. Only after a fifth attempt on September 17th was preempted by a delay to September 18th did SpaceX finally find a gap between Florida’s summer weather.
With dozens of Starlink launches beginning to blur together and SpaceX’s Falcon 9 continuing a relentless and potentially record-breaking streak of successes at a pace that could soon make it the fastest launching rocket in history, it’s hard to be surprised that Starlink 4-34 was completed without issue. Falcon 9 B1067 ascended under power for about three minutes, sent the rest of the rocket on the way to orbit, coasted into space, and returned to Earth with SpaceX’s 68th consecutively successful booster landing.
Falcon 9’s underappreciated upper stage continued into an orbit around 300 kilometers (~190 mi) up, spun itself up end over end, and deployed a 16.7-ton (~36,900 lb) stack of 54 Starlink V1.5 satellites all at once. Following the quick deployment, the rocket’s pair of reusable fairing halves were likely still 10 or 20 minutes away from touching down on the Atlantic Ocean under their GPS-guided parafoils, where they will eventually be scooped out of the water for future flights.
Starlink 4-34 was SpaceX’s 42nd launch of 2022, maintaining an average of one launch every 6.2 days since the year began. It leaves more than 3000 working Starlink satellites in Earth orbit, likely meaning that a majority of all working satellites are owned and operated by SpaceX less than three full years after the company began operational launches.
Up next, Next Spaceflight and Spaceflight Now report that SpaceX has two more Starlink launches (4-35 and 4-36) tentatively scheduled before the end of September. As of September 15th, both reported that those missions were working towards launches on September 19th and September 26th – nothing unusual for SpaceX in 2022.
What was unusual, however, was both unofficial manifests’ agreement that SpaceX intended to use the same pad – Cape Canaveral Space Force Station’s LC-40 – to launch Starlink 4-34, 4-35, and 4-36. Even assuming that those schedules were predicated upon Starlink 4-34 launching on September 13th, before all of its weather delays, SpaceX would have had to break LC-40’s 7.7-day turnaround record by around ~25% and complete a second launch just seven days after that.
Starlink 4-34’s delays have thrown that plan into question, but the fact that SpaceX thought it was possible in the first place suggests that the company has plans to squeeze even more performance out of LC-40 – already its most important pad from the perspective of launch cadence. Launch photographer Ben Cooper now reports that Starlink 4-36 could launch in late September or October. If it slips into October, SpaceX has a rapid-fire pair of customer satellite launches scheduled on October 5th and 13th that will probably take precedent over any internal Starlink mission.
With only 16 days left before LC-40’s next commercial launch and NASA’s Crew-5 launch taking over SpaceX’s other East Coast pad until October 3rd, SpaceX would have to launch Starlink 4-35 and 4-36 just four or five days apart (and one just 4-5 days after Starlink 4-34) to avoid delaying one of the Starlink missions well into October, avoid unnecessarily delaying commercial launches for paying customers, and ensure that those customers don’t have abruptly agree to be commercial guinea pigs for extra quick LC-40 turnarounds.
Starlink 4-35 is now tentatively scheduled for September 23rd, making a Starlink 4-36 delay more likely but not fully ruling out a launch attempt before the end of the month.
News
Elon Musk’s Grok AI to be used in U.S. War Department’s bespoke AI platform
The partnership aims to provide advanced capabilities to 3 million military and civilian personnel.
The U.S. Department of War announced Monday an agreement with Elon Musk’s xAI to embed the company’s frontier artificial intelligence systems, powered by the Grok family of models, into the department’s bespoke AI platform GenAI.mil.
The partnership aims to provide advanced capabilities to 3 million military and civilian personnel, with initial deployment targeted for early 2026 at Impact Level 5 (IL5) for secure handling of Controlled Unclassified Information.
xAI Integration
As noted by the War Department’s press release, GenAI.mil, its bespoke AI platform, will gain xAI for the Government’s suite of tools, which enable real-time global insights from the X platform for “decisive information advantage.” The rollout builds on xAI’s July launch of products for U.S. government customers, including federal, state, local, and national security use cases.
“Targeted for initial deployment in early 2026, this integration will allow all military and civilian personnel to use xAI’s capabilities at Impact Level 5 (IL5), enabling the secure handling of Controlled Unclassified Information (CUI) in daily workflows. Users will also gain access to real‑time global insights from the X platform, providing War Department personnel with a decisive information advantage,” the Department of War wrote in a press release.
Strategic advantages
The deal marks another step in the Department of War’s efforts to use cutting-edge AI in its operations. xAI, for its part, highlighted that its tools can support administrative tasks at the federal, state and local levels, as well as “critical mission use cases” at the front line of military operations.
“The War Department will continue scaling an AI ecosystem built for speed, security, and decision superiority. Newly IL5-certified capabilities will empower every aspect of the Department’s workforce, turning AI into a daily operational asset. This announcement marks another milestone in America’s AI revolution, and the War Department is driving that momentum forward,” the War Department noted.
News
Tesla FSD (Supervised) v14.2.2 starts rolling out
The update focuses on smoother real-world performance, better obstacle awareness, and precise end-of-trip routing, among other improvements.
Tesla has started rolling out Full Self-Driving (Supervised) v14.2.2, bringing further refinements to its most advanced driver-assist system. The new FSD update focuses on smoother real-world performance, better obstacle awareness, and precise end-of-trip routing, among other improvements.
Key FSD v14.2.2 improvements
As noted by Not a Tesla App, FSD v14.2.2 upgrades the vision encoder neural network with higher resolution features, enhancing detection of emergency vehicles, road obstacles, and human gestures. New Arrival Options let users select preferred drop-off styles, such as Parking Lot, Street, Driveway, Parking Garage, or Curbside, with the navigation pin automatically adjusting to the user’s ideal spot for precision.
Other additions include pulling over for emergency vehicles, real-time vision-based detours for blocked roads, improved gate and debris handling, and extreme Speed Profiles for customized driving styles. Reliability gains cover fault recovery, residue alerts on the windshield, and automatic narrow-field camera washing for new 2026 Model Y units.
FSD v14.2.2 also boosts unprotected turns, lane changes, cut-ins, and school bus scenarios, among other things. Tesla also noted that users’ FSD statistics will be saved under Controls > Autopilot, which should help drivers easily view how much they are using FSD in their daily drives.
Key FSD v14.2.2 release notes
Full Self-Driving (Supervised) v14.2.2 includes:
- Upgraded the neural network vision encoder, leveraging higher resolution features to further improve scenarios like handling emergency vehicles, obstacles on the road, and human gestures.
- Added Arrival Options for you to select where FSD should park: in a Parking Lot, on the Street, in a Driveway, in a Parking Garage, or at the Curbside.
- Added handling to pull over or yield for emergency vehicles (e.g. police cars, fire trucks, ambulances).
- Added navigation and routing into the vision-based neural network for real-time handling of blocked roads and detours.
- Added additional Speed Profile to further customize driving style preference.
- Improved handling for static and dynamic gates.
- Improved offsetting for road debris (e.g. tires, tree branches, boxes).
- Improve handling of several scenarios, including unprotected turns, lane changes, vehicle cut-ins, and school buses.
- Improved FSD’s ability to manage system faults and recover smoothly from degraded operation for enhanced reliability.
- Added alerting for residue build-up on interior windshield that may impact front camera visibility. If affected, visit Service for cleaning!
- Added automatic narrow field washing to provide rapid and efficient front camera self-cleaning, and optimize aerodynamics wash at higher vehicle speed.
- Camera visibility can lead to increased attention monitoring sensitivity.
Upcoming Improvements:
- Overall smoothness and sentience.
- Parking spot selection and parking quality.
News
Tesla is not sparing any expense in ensuring the Cybercab is safe
Images shared by the longtime watcher showed 16 Cybercab prototypes parked near Giga Texas’ dedicated crash test facility.
The Tesla Cybercab could very well be the safest taxi on the road when it is released and deployed for public use. This was, at least, hinted at by the intensive safety tests that Tesla seems to be putting the autonomous two-seater through at its Giga Texas crash test facility.
Intensive crash tests
As per recent images from longtime Giga Texas watcher and drone operator Joe Tegtmeyer, Tesla seems to be very busy crash testing Cybercab units. Images shared by the longtime watcher showed 16 Cybercab prototypes parked near Giga Texas’ dedicated crash test facility just before the holidays.
Tegtmeyer’s aerial photos showed the prototypes clustered outside the factory’s testing building. Some uncovered Cybercabs showed notable damage and one even had its airbags engaged. With Cybercab production expected to start in about 130 days, it appears that Tesla is very busy ensuring that its autonomous two-seater ends up becoming the safest taxi on public roads.
Prioritizing safety
With no human driver controls, the Cybercab demands exceptional active and passive safety systems to protect occupants in any scenario. Considering Tesla’s reputation, it is then understandable that the company seems to be sparing no expense in ensuring that the Cybercab is as safe as possible.
Tesla’s focus on safety was recently highlighted when the Cybertruck achieved a Top Safety Pick+ rating from the Insurance Institute for Highway Safety (IIHS). This was a notable victory for the Cybertruck as critics have long claimed that the vehicle will be one of, if not the, most unsafe truck on the road due to its appearance. The vehicle’s Top Safety Pick+ rating, if any, simply proved that Tesla never neglects to make its cars as safe as possible, and that definitely includes the Cybercab.