Connect with us

News

SpaceX may have signed a fairing agreement with ULA supplier RUAG (Update: no agreement)

Falcon 9 and Heavy use the same custom-built fairing but SpaceX is reportedly interested in buying taller fairings from prominent ULA supplier RUAG. (SpaceX/ULA)

Published

on

According to unverified and speculative comments reportedly made to a member of the space industry by a RUAG spokesperson, the prominent aerospace supplier may have reached an agreement with SpaceX to manufacture a handful of larger payload fairings for future Falcon 9 and Heavy launches.

In the likely event that SpaceX is one of two contractors awarded a portion of several dozen US military launch contracts next year, the company will need to be able to cater to niche requirements, including accommodating unusually tall military satellites. Those satellites can be so tall that SpaceX’s own payload fairing – generally middle-of-the-pack relative to competitors’ offerings – may be too short, meaning that SpaceX will have to find ways around that minor shortcoming.

Update: Tim Chen has retracted his earlier comments and has stated that there is actually no agreement currently in place with SpaceX for RUAG to produce taller fairings out of its new Decatur, AL factory.

Additionally, ULA CEO Tory Bruno clarified that the company’s “[new fairing] has [ULA] intellectual property in its design and manufacture … [and] is currently planned only for use on Atlas and Vulcan”, meaning that any cooperation between SpaceX and RUAG would likely require a new production facility and a somewhat different fairing design.

“ULA’s new fairing, which is built in our factory in Decatur, has our intellectual property in its design and manufacture. This fairing is currently planned only for use on Atlas and Vulcan. You would want to ask RUAG about business they might have with their other customers.”

Tory Bruno, August 14th, 2019

https://twitter.com/timothytchen1/status/1161261562713137153

Regardless of the veracity of these recent claims, it appears that SpaceX has three obvious responses at its disposal: design and build an entirely new variant of its universal Falcon fairing, purchase the necessary fairings from an established supplier, or bow out of launch contract competitions that demand it. The latter option is immediately untenable given that it could very well mean bowing out of the entire US military competition, known as Phase 2 of the National Security Space Launch program’s (NSSL; formerly EELV) Launch Services Procurement (LSP).

For dubious reasons, the US Air Force (USAF) has structured the NSSL Phase 2 acquisition in such a way that – despite there being four possible competitors – only two will be awarded contracts at its conclusion. The roughly ~30 launch contracts up for grabs would be split 60:40 between the two victors, leaving two competitors completely emptyhanded. In short, bowing out of the Phase 2 competition could mean forgoing as many as one or two-dozen contracts worth at least $1-2B, depending on the side of the 60:40 split.

Advertisement
-->
A side-by-side comparison of Blue Origin, SpaceX, and ULA fairings, roughly to scale. (Teslarati)

According to a handful of recent comments and developments, SpaceX has likely sided with the option of procuring taller fairings from an industry supplier. As it turns out, European company RUAG has effectively cornered the Western rocket fairing market, with SpaceX being the only Western launch company currently building its own fairings. RUAG builds fairings for both Arianespace’s Ariane 5 and Vega rockets and ULA’s Atlas V. Additionally, RUAG will build and supply fairings for both companies’ next-gen rockets – Arianespace’s Ariane 6 and ULA’s Vulcan – and builds fairings for a number of smallsat launch companies.

Comments made in June by a RUAG official confirmed that there was some semblance of a relationship between SpaceX and RUAG for the purpose of satisfying USAF needs for taller fairings, although the phrasing suggested that the cooperation was in its early stages and nothing had been solidified.

“In a June 12 letter to Smith, the company’s CEO Peter Guggenbach makes the case that legislation forcing access to suppliers is unnecessary in this case because RUAG does not have an exclusive arrangement with ULA and is willing to work with SpaceX or any other launch providers.

“For this competition, we are in the process of submitting or have submitted proposals to multiple prime contractors regarding launch vehicle fairings. In those agreements, we share technical data to support a prime contractor’s bid while protecting our intellectual property.”

RUAG vice president Karl Jensen told 
SpaceNews the company has a “significant partnership” with ULA but is looking to work with others too. “We have an offer to SpaceX,” he said. “We don’t know if they’ll accept it.”

SpaceNews, 06/13/2019

RUAG (right) builds payload fairings for Ariane 5/6, Delta IV, Atlas V, and Vulcan. SpaceX (left) builds its own Falcon fairings in-house. (SpaceX/RUAG)

Interestingly, although ULA’s RUAG-built Atlas V fairing is slightly narrower than SpaceX’s 5.2m (17 ft) diameter fairing, Atlas V’s largest fairing is significantly taller, supporting payloads up to 16.5m (54 ft) tall compared to 11m (36 ft) for Falcon 9 and Heavy. Given that just a tiny portion of military spacecraft actually need fairings that tall, SpaceX is apparently not interested in simply modifying its own fairing design and production equipment to support a 20-30% stretch.

This likely relates in part to the fact that one of SpaceX’s three NSSL Phase 2 competitors – Northrop Grumman (Omega), Blue Origin (New Glenn), and ULA (Vulcan) – are guaranteed to receive hundreds of millions of dollars of development funding after winning one of the two available slots (60% or 40% of contracts). SpaceX, on the other hand, will receive no such funding while still having to meet the same stringent USAF requirements compete in LSP Phase 2. Of note, Congressman Adam Smith managed to insert a clause into FY2020’s defense authorization bill that could disburse up to $500M to SpaceX in the event that the company is one of Phase 2’s two winners.

SpaceX builds all large Falcon 9 and Heavy composite structures in house, including landing legs, interstages, and payload fairings. (SpaceX, 2016)

Despite this potential influx of infrastructure-focused funds, SpaceX may still be pursuing taller Falcon fairings from RUAG as a backup in the event that the company is not one of the two Phase 2 winners or is unable to use some of the $500M secured by Rep. Smith to develop its own stretched fairing.

On August 12th, SpaceX – along with Blue Origin, ULA, and NGIS – submitted bids for NSSL Phase 2 launch services, confirming that all four companies will indeed be in the running for contracts. The USAF is not expected to announce the results of this competition until Q2 2020.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla hints at Starlink integration with recent patent

“By employing polymer blends, some examples enable RF transmission from all the modules to satellites and other communication devices both inside and outside the vehicle.”

Published

on

Credit: Grok

Tesla hinted at a potential Starlink internet terminal integration within its vehicles in a recent patent, which describes a vehicle roof assembly with integrated radio frequency (RF) transparency.

The patent, which is Pub. No U.S. 2025/0368267 describes a new vehicle roof that is made of RF-transparent polymer materials, allowing and “facilitating clear communication with external devices and satellites.”

Tesla believes that a new vehicle roof design, comprised of different materials than the standard metallic or glass elements used in cars today, would allow the company to integrate modern vehicular technologies, “particularly those requiring radio frequency transmission and reception.

Instead of glass or metallic materials, Tesla says vehicles may benefit from high-strength polymer blends, such as Polycarbonate, Acrylonitrile Butadiene Styrene, or Acrylonitrile Styrene Acrylate.

These materials still provide ideal strength metrics for crashworthiness, stiffness for noise, vibration, and harshness control, and are compliant with head impact regulations.

They would also enable better performance with modern technologies, like internet terminals, which need an uninterrupted signal to satellites for maximum reception. Tesla writes in the patent:

“By employing polymer blends, some examples enable RF transmission from all the modules to satellites and other communication devices both inside and outside the vehicle.”

One of the challenges Tesla seems to be aware of with this type of roof design is the fact that it will still have to enable safety and keep that at the forefront of the design. As you can see in the illustration above, Tesla plans to use four layers to increase safety and rigidity, while also combating noise and vibration.

It notes in the patent that disclosed examples still meet the safety requirements outlined in the Federal Motor Vehicle Safety Standards (FMVSS).

Starlink integrated directly into Tesla vehicles would be a considerable advantage for owners. It would come with a handful of distinct advantages.

Initially, the inclusion of Starlink would completely eliminate cellular dead zones, something that is an issue, especially in rural areas. Starlink would provide connectivity in these remote regions and would ensure uninterrupted service during road trips and off-grid adventures.

It could also be a critical addition for Robotaxi, as it is crucial to have solid and reliable connectivity for remote monitoring and fleet management.

Starlink’s growing constellation, thanks to SpaceX’s routine and frequent launch schedule, will provide secure, stable, and reliable internet connectivity for Tesla vehicles.

SpaceX reaches incredible milestone with Starlink program

Although many owners have already mounted Starlink Mini dishes under their glass roofs for a similar experience, it may be integrated directly into Teslas in the coming years, either as an upgrade or a standard feature.

Continue Reading

News

Tesla supplements Holiday Update by sneaking in new Full Self-Driving version

It seems Tesla was waiting for the Hardware 4 rollout, as it wanted to also deploy a new Full Self-Driving version to those owners, as it appeared in the release notes for the Holiday Update last night.

Published

on

Credit: Tesla

Tesla has surprised some owners by sneaking in a new Full Self-Driving version with the wide release of the Holiday Update, which started rolling out to Hardware 4 owners on Friday night.

Tesla has issued a controlled and very slow release pattern with the Holiday Update, which rolls out with Software Version 2025.44.25.5.

For the past two weeks, as it has rolled out to Hardware 3 and older Tesla owners, the company has kept its deployment of the new Software Version relatively controlled.

It seems Tesla was waiting for the Hardware 4 rollout, as it wanted to also deploy a new Full Self-Driving version to those owners, as it appeared in the release notes for the Holiday Update last night.

Tesla Full Self-Driving v14.2.1.25 made its first appearance last night to Hardware 4 owners who are members of the Early Access Program (EAP). It appears to be a slight refinement from FSD v14.2.1, which has been out for a couple of weeks.

Many owners welcome the new FSD version, us included, because we’ve been less than impressed with v14.2.1. We have experienced some minor regressions with v14.2.1, especially with Speed Limit recognition, Speed Profile tinkering, and parking performance.

As it stands, Full Self-Driving is still particularly impressive, but Tesla is evidently having an issue with some of the adjustments, as it is still refining some of the performance aspects of the suite. This is expected and normal with some updates, as not all of them are an improvement in all areas; we routinely see some things backtrack every once in a while.

This new FSD version is likely to take care of those things, but it also includes all of the awesome Holiday Update features, which include:

  • Grok with Navigation Commands (Beta) – Grok will now add and edit destinations.
  • Tesla Photobooth – Take pictures inside your car using the cabin-facing camera
  • Dog Mode Live Activity – Check on your four-legged friend on your phone through periodic snapshots taken of the cabin
  • Dashcam Viewer Update – Includes new metrics, like steering wheel angle, speed, and more
  • Santa Mode – New graphics, trees, and a lock chime
  • Light Show Update – Addition of Jingle Rush light show
  • Custom Wraps and License Plates – Colorizer now allows you to customize your vehicle even further, with custom patterns, license plates, and tint
  • Navigation Improvements – Easier layout and setup
  • Supercharger Site Map – Starting at 18 pilot locations, a 3D view of the Supercharger you’re visiting will be available
  • Automatic Carpool Lane Routing – Navigation will utilize carpool lanes if enabled
  • Phone Left Behind Chime – Your car will now tell you if you left a phone inside
  • Charge Limit Per Location – Set a charge limit for each location
  • ISS Docking Simulator –  New game
  • Additional Improvements – Turn off wireless charging pad, Spotify improvements, Rainbow Rave Cave, Lock Sound TRON addition

Tesla also added two other things that were undocumented, like Charging Passport and information on USB drive storage to help with Dashcam.

Continue Reading

Cybertruck

Tesla updates Cybertruck owners about key Powershare feature

Published

on

Credit: Tesla

Tesla is updating Cybertruck owners on its timeline of a massive feature that has yet to ship: Powershare with Powerwall.

Powershare is a bidirectional charging feature exclusive to Cybertruck, which allows the vehicle’s battery to act as a portable power source for homes, appliances, tools, other EVs, and more. It was announced in late 2023 as part of Tesla’s push into vehicle-to-everything energy sharing, and acting as a giant portable charger is the main advantage, as it can provide backup power during outages.

Cybertruck’s Powershare system supports both vehicle-to-load (V2L) and vehicle-to-home (V2H), making it flexible and well-rounded for a variety of applications.

However, even though the feature was promised with Cybertruck, it has yet to be shipped to vehicles. Tesla communicated with owners through email recently regarding Powershare with Powerwall, which essentially has the pickup act as an extended battery.

Powerwall discharge would be prioritized before tapping into the truck’s larger pack.

However, Tesla is still working on getting the feature out to owners, an email said:

“We’re writing to let you know that the Powershare with Powerwall feature is still in development and is now scheduled for release in mid-2026. 

This new release date gives us additional time to design and test this feature, ensuring its ability to communicate and optimize energy sharing between your vehicle and many configurations and generations of Powerwall. We are also using this time to develop additional Powershare features that will help us continue to accelerate the world’s transition to sustainable energy.”

Owners have expressed some real disappointment in Tesla’s continuous delays in releasing the feature, as it was expected to be released by late 2024, but now has been pushed back several times to mid-2026, according to the email.

Foundation Series Cybertruck buyers paid extra, expecting the feature to be rolled out with their vehicle upon pickup.

Cybertruck’s Lead Engineer, Wes Morrill, even commented on the holdup:

He said that “it turned out to be much harder than anticipated to make powershare work seamlessly with existing Powerwalls through existing wall connectors. Two grid-forming devices need to negotiate who will form and who will follow, depending on the state of charge of each, and they need to do this without a network and through multiple generations of hardware, and test and validate this process through rigorous certifications to ensure grid safety.”

It’s nice to see the transparency, but it is justified for some Cybertruck owners to feel like they’ve been bait-and-switched.

Continue Reading