Connect with us

News

SpaceX may have signed a fairing agreement with ULA supplier RUAG (Update: no agreement)

Falcon 9 and Heavy use the same custom-built fairing but SpaceX is reportedly interested in buying taller fairings from prominent ULA supplier RUAG. (SpaceX/ULA)

Published

on

According to unverified and speculative comments reportedly made to a member of the space industry by a RUAG spokesperson, the prominent aerospace supplier may have reached an agreement with SpaceX to manufacture a handful of larger payload fairings for future Falcon 9 and Heavy launches.

In the likely event that SpaceX is one of two contractors awarded a portion of several dozen US military launch contracts next year, the company will need to be able to cater to niche requirements, including accommodating unusually tall military satellites. Those satellites can be so tall that SpaceX’s own payload fairing – generally middle-of-the-pack relative to competitors’ offerings – may be too short, meaning that SpaceX will have to find ways around that minor shortcoming.

Update: Tim Chen has retracted his earlier comments and has stated that there is actually no agreement currently in place with SpaceX for RUAG to produce taller fairings out of its new Decatur, AL factory.

Additionally, ULA CEO Tory Bruno clarified that the company’s “[new fairing] has [ULA] intellectual property in its design and manufacture … [and] is currently planned only for use on Atlas and Vulcan”, meaning that any cooperation between SpaceX and RUAG would likely require a new production facility and a somewhat different fairing design.

“ULA’s new fairing, which is built in our factory in Decatur, has our intellectual property in its design and manufacture. This fairing is currently planned only for use on Atlas and Vulcan. You would want to ask RUAG about business they might have with their other customers.”

Tory Bruno, August 14th, 2019

https://twitter.com/timothytchen1/status/1161261562713137153

Regardless of the veracity of these recent claims, it appears that SpaceX has three obvious responses at its disposal: design and build an entirely new variant of its universal Falcon fairing, purchase the necessary fairings from an established supplier, or bow out of launch contract competitions that demand it. The latter option is immediately untenable given that it could very well mean bowing out of the entire US military competition, known as Phase 2 of the National Security Space Launch program’s (NSSL; formerly EELV) Launch Services Procurement (LSP).

For dubious reasons, the US Air Force (USAF) has structured the NSSL Phase 2 acquisition in such a way that – despite there being four possible competitors – only two will be awarded contracts at its conclusion. The roughly ~30 launch contracts up for grabs would be split 60:40 between the two victors, leaving two competitors completely emptyhanded. In short, bowing out of the Phase 2 competition could mean forgoing as many as one or two-dozen contracts worth at least $1-2B, depending on the side of the 60:40 split.

Advertisement
-->
A side-by-side comparison of Blue Origin, SpaceX, and ULA fairings, roughly to scale. (Teslarati)

According to a handful of recent comments and developments, SpaceX has likely sided with the option of procuring taller fairings from an industry supplier. As it turns out, European company RUAG has effectively cornered the Western rocket fairing market, with SpaceX being the only Western launch company currently building its own fairings. RUAG builds fairings for both Arianespace’s Ariane 5 and Vega rockets and ULA’s Atlas V. Additionally, RUAG will build and supply fairings for both companies’ next-gen rockets – Arianespace’s Ariane 6 and ULA’s Vulcan – and builds fairings for a number of smallsat launch companies.

Comments made in June by a RUAG official confirmed that there was some semblance of a relationship between SpaceX and RUAG for the purpose of satisfying USAF needs for taller fairings, although the phrasing suggested that the cooperation was in its early stages and nothing had been solidified.

“In a June 12 letter to Smith, the company’s CEO Peter Guggenbach makes the case that legislation forcing access to suppliers is unnecessary in this case because RUAG does not have an exclusive arrangement with ULA and is willing to work with SpaceX or any other launch providers.

“For this competition, we are in the process of submitting or have submitted proposals to multiple prime contractors regarding launch vehicle fairings. In those agreements, we share technical data to support a prime contractor’s bid while protecting our intellectual property.”

RUAG vice president Karl Jensen told 
SpaceNews the company has a “significant partnership” with ULA but is looking to work with others too. “We have an offer to SpaceX,” he said. “We don’t know if they’ll accept it.”

SpaceNews, 06/13/2019

RUAG (right) builds payload fairings for Ariane 5/6, Delta IV, Atlas V, and Vulcan. SpaceX (left) builds its own Falcon fairings in-house. (SpaceX/RUAG)

Interestingly, although ULA’s RUAG-built Atlas V fairing is slightly narrower than SpaceX’s 5.2m (17 ft) diameter fairing, Atlas V’s largest fairing is significantly taller, supporting payloads up to 16.5m (54 ft) tall compared to 11m (36 ft) for Falcon 9 and Heavy. Given that just a tiny portion of military spacecraft actually need fairings that tall, SpaceX is apparently not interested in simply modifying its own fairing design and production equipment to support a 20-30% stretch.

This likely relates in part to the fact that one of SpaceX’s three NSSL Phase 2 competitors – Northrop Grumman (Omega), Blue Origin (New Glenn), and ULA (Vulcan) – are guaranteed to receive hundreds of millions of dollars of development funding after winning one of the two available slots (60% or 40% of contracts). SpaceX, on the other hand, will receive no such funding while still having to meet the same stringent USAF requirements compete in LSP Phase 2. Of note, Congressman Adam Smith managed to insert a clause into FY2020’s defense authorization bill that could disburse up to $500M to SpaceX in the event that the company is one of Phase 2’s two winners.

SpaceX builds all large Falcon 9 and Heavy composite structures in house, including landing legs, interstages, and payload fairings. (SpaceX, 2016)

Despite this potential influx of infrastructure-focused funds, SpaceX may still be pursuing taller Falcon fairings from RUAG as a backup in the event that the company is not one of the two Phase 2 winners or is unable to use some of the $500M secured by Rep. Smith to develop its own stretched fairing.

On August 12th, SpaceX – along with Blue Origin, ULA, and NGIS – submitted bids for NSSL Phase 2 launch services, confirming that all four companies will indeed be in the running for contracts. The USAF is not expected to announce the results of this competition until Q2 2020.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla Model Y and Model 3 named safest vehicles tested by ANCAP in 2025

According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025.

Published

on

Credit: ANCAP

The Tesla Model Y recorded the highest overall safety score of any vehicle tested by ANCAP in 2025. The Tesla Model 3 also delivered strong results, reinforcing the automaker’s safety leadership in Australia and New Zealand.

According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025. ANCAP’s 2025 tests evaluated vehicles across four key pillars: Adult Occupant Protection, Child Occupant Protection, Vulnerable Road User Protection, and Safety Assist technologies.

The Model Y posted consistently strong results in all four categories, distinguishing itself through a system-based safety approach that combines structural crash protection with advanced driver-assistance features such as autonomous emergency braking, lane support, and driver monitoring. 

This marked the second time the Model Y has topped ANCAP’s annual safety rankings. The Model Y’s previous version was also ANCAP’s top performer in 2022.

The Tesla Model 3 also delivered a strong performance in ANCAP’s 2025 tests, contributing to Tesla’s broader safety presence across segments. Similar to the Model Y, the Model 3 also earned impressive scores across the ANCAP’s four pillars. This made the vehicle the top performer in the Medium Car category.  

ANCAP Chief Executive Officer Carla Hoorweg stated that the results highlight a growing industry shift toward integrated safety design, with improvements in technologies such as autonomous emergency braking and lane support translating into meaningful real-world protection.

Advertisement
-->

“ANCAP’s testing continues to reinforce a clear message: the safest vehicles are those designed with safety as a system, not a checklist. The top performers this year delivered consistent results across physical crash protection, crash avoidance and vulnerable road user safety, rather than relying on strength in a single area.

“We are also seeing increasing alignment between ANCAP’s test requirements and the safety technologies that genuinely matter on Australian and New Zealand roads. Improvements in autonomous emergency braking, lane support, and driver monitoring systems are translating into more robust protection,” Hoorweg said.

Continue Reading

News

Tesla Sweden uses Megapack battery to bypass unions’ Supercharger blockade

Just before Christmas, Tesla went live with a new charging station in Arlandastad, outside Stockholm, by powering it with a Tesla Megapack battery.

Published

on

Credit: Tesla Charging/X

Tesla Sweden has successfully launched a new Supercharger station despite an ongoing blockade by Swedish unions, using on-site Megapack batteries instead of traditional grid connections. The workaround has allowed the Supercharger to operate without direct access to Sweden’s electricity network, which has been effectively frozen by labor action.

Tesla has experienced notable challenges connecting its new charging stations to Sweden’s power grid due to industrial action led by Seko, a major Swedish trade union, which has blocked all new electrical connections for new Superchargers. On paper, this made the opening of new Supercharger sites almost impossible.

Despite the blockade, Tesla has continued to bring stations online. In Malmö and Södertälje, new Supercharger locations opened after grid operators E.ON and Telge Nät activated the sites. The operators later stated that the connections had been made in error. 

More recently, however, Tesla adopted a different strategy altogether. Just before Christmas, Tesla went live with a new charging station in Arlandastad, outside Stockholm, by powering it with a Tesla Megapack battery, as noted in a Dagens Arbete (DA) report. 

Because the Supercharger station does not rely on a permanent grid connection, Tesla was able to bypass the blocked application process, as noted by Swedish car journalist and YouTuber Peter Esse. He noted that the Arlandastad Supercharger is likely dependent on nearby companies to recharge the batteries, likely through private arrangements.

Advertisement
-->

Eight new charging stalls have been launched in the Arlandastad site so far, which is a fraction of the originally planned 40 chargers for the location. Still, the fact that Tesla Sweden was able to work around the unions’ efforts once more is impressive, especially since Superchargers are used even by non-Tesla EVs.

Esse noted that Tesla’s Megapack workaround is not as easily replicated in other locations. Arlandastad is unique because neighboring operators already have access to grid power, making it possible for Tesla to source electricity indirectly. Still, Esse noted that the unions’ blockades have not affected sales as much.

“Many want Tesla to lose sales due to the union blockades. But you have to remember that sales are falling from 2024, when Tesla sold a record number of cars in Sweden. That year, the unions also had blockades against Tesla. So for Tesla as a charging operator, it is devastating. But for Tesla as a car company, it does not matter in terms of sales volumes. People charge their cars where there is an opportunity, usually at home,” Esse noted. 

Advertisement
-->
Continue Reading

Elon Musk

Elon Musk’s X goes down as users report major outage Friday morning

Error messages and stalled loading screens quickly spread across the service, while outage trackers recorded a sharp spike in user reports.

Published

on

Credit: Linda Yaccarino/X

Elon Musk’s X experienced an outage Friday morning, leaving large numbers of users unable to access the social media platform.

Error messages and stalled loading screens quickly spread across the service, while outage trackers recorded a sharp spike in user reports.

Downdetector reports

Users attempting to open X were met with messages such as “Something went wrong. Try reloading,” often followed by an endless spinning icon that prevented access, according to a report from Variety. Downdetector data showed that reports of problems surged rapidly throughout the morning.

As of 10:52 a.m. ET, more than 100,000 users had reported issues with X. The data indicated that 56% of complaints were tied to the mobile app, while 33% were related to the website and roughly 10% cited server connection problems. The disruption appeared to begin around 10:10 a.m. ET, briefly eased around 10:35 a.m., and then returned minutes later.

Credit: Downdetector

Previous disruptions

Friday’s outage was not an isolated incident. X has experienced multiple high-profile service interruptions over the past two years. In November, tens of thousands of users reported widespread errors, including “Internal server error / Error code 500” messages. Cloudflare-related error messages were also reported.

In March 2025, the platform endured several brief outages spanning roughly 45 minutes, with more than 21,000 reports in the U.S. and 10,800 in the U.K., according to Downdetector. Earlier disruptions included an outage in August 2024 and impairments to key platform features in July 2023.

Advertisement
-->
Continue Reading