News
SpaceX preparing for back-to-back Starlink launches from California and Florida
Update: Next Spaceflight reports that SpaceX has delayed Starlink 4-15 to 4:38 pm EDT, May 14th, ending the immediate possibility of a new SpaceX record for time between launches.
After a few days of delays pushed the missions closer together, SpaceX is now preparing to launch two batches of 53 Starlink satellites just eight hours apart – one from Florida and the other from California.
Originally scheduled to launch as early May 10th, which would have tied SpaceX’s Vandenberg Space Force Base (VSFB) SLC-4E launch pad turnaround record, Starlink 4-13 slipped to May 12th within the last few days. 2400 miles (~3900 km) to the east, SpaceX’s Starlink 4-15 mission – preparing to launch from the company’s Cape Canaveral Space Force Station (CCSFS) LC-40 pad – recently found itself in the opposite boat.
On April 22nd, Spaceflight Now reported that Starlink 4-15 was scheduled to launch no earlier than (NET) May 8th. At the time, Starlink 4-13 was also scheduled to launch on the 8th, placing the two Starlink missions just a few hours apart. On April 28th, Spaceflight Now updated its well-sourced launch calendar, revealing that Starlink 4-13 had slipped to May 10th and Starlink 4-15 to May 16th, ending their concurrence. Finally, on May 7th and May 8th, photographer Ben Cooper reported that Starlink 4-15 had moved up to 2:08 am EDT (06:08 UTC), May 13th and FAA documents revealed that Starlink 4-13 had slipped again to 3:29 pm PDT (22:29 UTC), May 12th.
In other words, the missions have again found themselves just a handful of hours apart after weeks of unrelated juggling and delays. Barring additional issues, Starlink 4-13 and Starlink 4-15 are scheduled to launch just 7 hours and 41 minutes apart. Set in late 2021, the shortest time between two Falcon launches is currently 15 hours and 17 minutes. But above all else, the constant back and forth – only to end up with both launches again just hours apart – demonstrates just how agonizing and unforgiving the planning behind every rocket launch schedule truly is.
Fittingly, Starlink 4-13’s drone ship headed to sea just ~60 hours before the scheduled launch and Starlink 4-15’s drone ship has yet to depart, keeping the launch dates of both missions about as uncertain as they can be without guaranteeing that delays are coming. Both drone ships must be towed about 400 miles downrange at speeds that almost never exceed 8-10 mph, translating to a minimum two-day journey even with zero stops, slowdowns, or detours.
Beyond the record-breaking potential, Starlink 4-13 is an otherwise ordinary mission that will launch another 53 Starlink V1.5 satellites to an ordinary 53.2-degree inclination, which simply means that they’ll end up in the same ‘shell’ as the other satellites in Starlink’s ‘Group 4’ shell. Despite launching from the opposite coast of the US, Starlink 4-15 will be almost identical and is expected to deploy another 53 Starlink V1.5 satellites to the same orbital shell. However, it appears that Starlink 4-15 will have a few highly unusual features.
Instead of performing a hockey stick-like ‘dogleg’ maneuver to avoid overflying any populated islands in the Bahamas, Falcon 9 will directly overfly the country’s largest western island and attempt to land right in the middle of the archipelago, potentially touching down on a drone ship just 5-15 miles away from Nassau and a couple other islands. The fact alone that SpaceX was able to convince both the Bahamas and the US’ FAA to allow it to fly the trajectory shown above is extremely impressive and belies a deep trust in SpaceX’s expertise and Falcon 9’s safety and reliability. At the same time, SpaceX may be taking some degree of risk, as the trajectory’s minuscule margins for error probably mean that Falcon 9’s automatic flight termination system will be programmed to destroy the rocket at the slightest hint of deviation from the planned trajectory.
Adding to the oddity, Starlink 4-15 will be the first in a long line of 45 dedicated Starlink launches to debut a new Falcon 9 booster. According to Next Spaceflight, Falcon 9 B1073 will claim that unusual first, almost entirely flipping the table on the precedent of conservative government customers – still timid about SpaceX reusability – scrambling to secure increasingly rare launch opportunities on new Falcon 9 boosters. Alternatively, it’s possible – but unlikely – that SpaceX implemented significant changes to Falcon 9 B1073 that it wants to verify independently before risking customer payloads.
With any luck, the new rocket will perform flawlessly and give some nearby Bahamians a truly one-of-a-kind experience: the ability to watch a SpaceX Falcon 9 booster land at sea… from the comfort of their own homes.
Elon Musk
Tesla announces crazy new Full Self-Driving milestone
The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.
Tesla has announced a crazy new Full Self-Driving milestone, as it has officially confirmed drivers have surpassed over 8 billion miles traveled using the Full Self-Driving (Supervised) suite for semi-autonomous travel.
The FSD (Supervised) suite is one of the most robust on the market, and is among the safest from a data perspective available to the public.
On Wednesday, Tesla confirmed in a post on X that it has officially surpassed the 8 billion-mile mark, just a few months after reaching 7 billion cumulative miles, which was announced on December 27, 2025.
Tesla owners have now driven >8 billion miles on FSD Supervisedhttps://t.co/0d66ihRQTa pic.twitter.com/TXz9DqOQ8q
— Tesla (@Tesla) February 18, 2026
The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.
The milestone itself is significant, especially considering Tesla has continued to gain valuable data from every mile traveled. However, the pace at which it is gathering these miles is getting faster.
Secondly, in January, Musk said the company would need “roughly 10 billion miles of training data” to achieve safe and unsupervised self-driving. “Reality has a super long tail of complexity,” Musk said.
Training data primarily means the fleet’s accumulated real-world miles that Tesla uses to train and improve its end-to-end AI models. This data captures the “long tail” — extremely rare, complex, or unpredictable situations that simulations alone cannot fully replicate at scale.
This is not the same as the total miles driven on Full Self-Driving, which is the 8 billion miles milestone that is being celebrated here.
The FSD-supervised miles contribute heavily to the training data, but the 10 billion figure is an estimate of the cumulative real-world exposure needed overall to push the system to human-level reliability.
News
Tesla Cybercab production begins: The end of car ownership as we know it?
While this could unlock unprecedented mobility abundance — cheaper rides, reduced congestion, freed-up urban space, and massive environmental gains — it risks massive job displacement in ride-hailing, taxi services, and related sectors, forcing society to confront whether the benefits of AI-driven autonomy will outweigh the human costs.
The first Tesla Cybercab rolled off of production lines at Gigafactory Texas yesterday, and it is more than just a simple manufacturing milestone for the company — it’s the opening salvo in a profound economic transformation.
Priced at under $30,000 with volume production slated for April, the steering-wheel-free, pedal-less Robotaxi-geared vehicle promises to make personal car ownership optional for many, slashing transportation costs to as little as $0.20 per mile through shared fleets and high utilization.

Credit: wudapig/Reddit< /a>
While this could unlock unprecedented mobility abundance — cheaper rides, reduced congestion, freed-up urban space, and massive environmental gains — it risks massive job displacement in ride-hailing, taxi services, and related sectors, forcing society to confront whether the benefits of AI-driven autonomy will outweigh the human costs.
Let’s examine the positives and negatives of what the Cybercab could mean for passenger transportation and vehicle ownership as we know it.
The Promise – A Radical Shift in Transportation Economics
Tesla has geared every portion of the Cybercab to be cheaper and more efficient. Even its design — a compact, two-seater, optimized for fleets and ride-sharing, the development of inductive charging, around 300 miles of range on a small battery, half the parts of the Model 3, and revolutionary “unboxed” manufacturing — is all geared toward rapid production.
Operating at a fraction of what today’s rideshare prices are, the Cybercab enables on-demand autonomy for a variety of people in a variety of situations.
Tesla ups Robotaxi fare price to another comical figure with service area expansion
It could also be the way people escape expensive and risky car ownership. Buying a vehicle requires expensive monthly commitments, including insurance and a payment if financed. It also immediately depreciates.
However, Cybercab could unlock potential profitability for owning a car by adding it to the Robotaxi network, enabling passive income. Cities could have parking lots repurposed into parks or housing, and emissions would drop as shared electric vehicles would outnumber gas cars (in time).
The first step of Tesla’s massive production efforts for the Cybercab could lead to millions of units annually, turning transportation into a utility like electricity — always available, cheap, and safe.
The Dark Side – Job Losses and Industry Upheaval
With Robotaxi and Cybercab, they present the same negatives as broadening AI — there’s a direct threat to the economy.
Uber, Lyft, and traditional taxis will rely on human drivers. Robotaxi will eliminate that labor cost, potentially displacing millions of jobs globally. In the U.S. alone, ride-hailing accounts for billions of miles of travel each year.
There are also potential ripple effects, as suppliers, mechanics, insurance adjusters, and even public transit could see reduced demand as shared autonomy grows. Past automation waves show job creation lags behind destruction, especially for lower-skilled workers.
Gig workers, like those who are seeking flexible income, face the brunt of this. Displaced drivers may struggle to retrain amid broader AI job shifts, as 2025 estimates bring between 50,000 and 300,000 layoffs tied to artificial intelligence.
It could also bring major changes to the overall competitive landscape. While Waymo and Uber have partnered, Tesla’s scale and lower costs could trigger a price war, squeezing incumbents and accelerating consolidation.
Balancing Act – Who Wins and Who Loses
There are two sides to this story, as there are with every other one.
The winners are consumers, Tesla investors, cities, and the environment. Consumers will see lower costs and safer mobility, while potentially alleviating themselves of awkward small talk in ride-sharing applications, a bigger complaint than one might think.
Elon Musk confirms Tesla Cybercab pricing and consumer release date
Tesla investors will be obvious winners, as the launch of self-driving rideshare programs on the company’s behalf will likely swell the company’s valuation and increase its share price.
Cities will have less traffic and parking needs, giving more room for housing or retail needs. Meanwhile, the environment will benefit from fewer tailpipes and more efficient fleets.
A Call for Thoughtful Transition
The Cybercab’s production debut forces us to weigh innovation against equity.
If Tesla delivers on its timeline and autonomy proves reliable, it could herald an era of abundant, affordable mobility that redefines urban life. But without proactive policies — retraining, safety nets, phased deployment — this revolution risks widening inequality and leaving millions behind.
Elon on the MKBHD bet, stating “Yes” to the question of whether Tesla would sell a Cybercab for $30k or less to a customer before 2027 https://t.co/sfTwSDXLUN
— TESLARATI (@Teslarati) February 17, 2026
The real question isn’t whether the Cybercab will disrupt — it’s already starting — it’s whether society is prepared for the economic earthquake it unleashes.
News
Tesla Model 3 wins Edmunds’ Best EV of 2026 award
The publication rated the Model 3 at an 8.1 out of 10, and with its most recent upgrades and changes, Edmunds says, “This is the best Model 3 yet.”
The Tesla Model 3 has won Edmunds‘ Top Rated Electric Car of 2026 award, beating out several other highly-rated and exceptional EV offerings from various manufacturers.
This is the second consecutive year the Model 3 beat out other cars like the Model Y, Audi A6 Sportback E-tron, and the BMW i5.
The car, which is Tesla’s second-best-selling vehicle behind the popular Model Y crossover, has been in the company’s lineup for nearly a decade. It offers essentially everything consumers could want from an EV, including range, a quality interior, performance, and Tesla’s Full Self-Driving suite, which is one of the best in the world.
The Tesla Model 3 has won Edmunds Top EV of 2026:
“The Tesla Model 3 might be the best value electric car you can buy, combining an Edmunds Rating of 8.1 out of 10, a starting price of $43,880, and an Edmunds-tested range of 338 miles. This is the best Model 3 yet. It is… pic.twitter.com/ARFh24nnDX
— TESLARATI (@Teslarati) February 18, 2026
The publication rated the Model 3 at an 8.1 out of 10, and with its most recent upgrades and changes, Edmunds says, “This is the best Model 3 yet.”
In its Top Rated EVs piece on its website, it said about the Model 3:
“The Tesla Model 3 might be the best value electric car you can buy, combining an Edmunds Rating of 8.1 out of 10, a starting price of $43,880, and an Edmunds-tested range of 338 miles. This is the best Model 3 yet. It is impressively well-rounded thanks to improved build quality, ride comfort, and a compelling combination of efficiency, performance, and value.”
Additionally, Jonathan Elfalan, Edmunds’ Director of Vehicle Testing, said:
“The Model 3 offers just about the perfect combination of everything — speed, range, comfort, space, tech, accessibility, and convenience. It’s a no-brainer if you want a sensible EV.”
The Model 3 is the perfect balance of performance and practicality. With the numerous advantages that an EV offers, the Model 3 also comes in at an affordable $36,990 for its Rear-Wheel Drive trim level.