Connect with us

News

SpaceX’s Cargo Dragon spacecraft nears space station with 2.5 tons of cargo

Cargo Dragon C112 departs the ISS after completing CRS-16, the capsule's second orbital mission. A new Cargo Dragon is scheduled to arrive on May 6th. (NASA)

Published

on

Following a successful May 4th launch atop Falcon 9, SpaceX’s latest Cargo Dragon spacecraft is just a few hours away from starting its International Space Station (ISS) berthing sequence.

Scheduled to begin around 5:30 am EDT (09:30 UTC), SpaceX operations staff will command Dragon to continue a cautious ISS approach. Several hours later, the spacecraft will be quite literally grabbed by station astronauts and gently berthed with one of the space station’s several Common Berthing Mechanism (CBM) ports. Once Cargo Dragon has been safely joined with the ISS, the station’s crew of astronauts can begin the intensive process of unpacking more than 1500 kg (3300 lb) of pressurized cargo, including dozens of time-sensitive and complex science experiments.

Aside from the 1.5 tons of cargo contained inside Dragon’s climate-controlled cabin, ISS astronauts and ground-based NASA controllers will again use the space station’s robotic Canadarm2 manipulator to extract two large unpressurized payloads from Dragon’s trunk. The ‘flagship’ instrument of CRS-17 is NASA’s Orbiting Carbon Observatory-3 (OCO-3), an upgraded follow-on to OCO-2 that should dramatically improve the quantity and quality of data available on the distribution of carbon in the Earth’s atmosphere. The second trunk-stashed payload is known as STP-H6 and is carrying around half a dozen distinct experiments.

The CRS-17 spacecraft departed Falcon 9’s upper stage at the crack of orbital dawn and offered a well-lit view of OCO-3 and STP-H6 in its trunk. (SpaceX)

Both STP-H6 and OCO-3 will be installed on the outside of the space station with the help of Canadarm2, an extremely useful capability that limits the need for astronauts to suit up and perform risky and time-consuming EVAs (extra-vehicular activities) outside the ISS. With its trunk emptied, Cargo Dragon will eventually discard the section to burn up in Earth’s atmosphere just before the reusable capsule begins its own reentry.

Unlike several other spacecraft with service sections, both proposed, flying, or retired, SpaceX’s Dragon spacecraft strive to minimize the complexity and cost of their expendable service sections. For both Cargo and Crew Dragon, the trunk serves as a structural adapter for unpressurized payloads and the Falcon-Dragon interface, hosts solar arrays and radiators, and doesn’t do much else. All propulsion, plumbing, and major avionics are kept within the capsule to maximize reusability.

Defining “slow and steady”

The process of berthing or docking with the ISS is a fundamentally cautious thing, developed by NASA, Roscosmos, and other international partners through forced and painful trial and error. In short, the road to today’s cautious procedures has been paved with countless failures and close calls over decades of space activity. For Cargo Dragon, the process involves berthing, more passive and less complex than docking. Outside of a dozen or so meters, the processes begin quite similarly. Cargo Dragon (Dragon 1) will very slowly approach the station’s several-hundred-meter keep out zone, typically no faster than a few m/s (mph).

Then follows a back-and-forth process of stop and go, in which SpaceX commands Dragon forward, halts at set locations, verifies performance and station readiness with NASA, and repeat. Once within 10 or so meters of the ISS, Dragon will begin carefully stationkeeping, essentially a version of formation flying without a hint of aerodynamic forces. ISS astronauts will then command the Canadarm2 robotic arm toward a sort of target/handle combo located on the spacecraft. The arm follows similar stop-start procedures before finally grappling Dragon, at which point the astronauts in command are legally required (/s) to quip something along the lines of “We’ve caught ourselves a Dragon!”

Cargo Dragon capsule C113 and its expendable trunk depart the ISS after successfully completing their CRS-12 resupply mission in September 2017. (NASA)
CRS-17 Cargo Dragon capsule C113 has flown once before, completing the CRS-12 orbital resupply mission in September 2017. (NASA)

From start to finish, the process takes about 1.5 hours under optimal conditions. Around 2.5 hours after that, Canadarm2 will physically berth Dragon with one of several ISS berthing ports. Soon after, station astronauts can open Dragon’s hatch, snag some fresh goodies, and begin the unpacking process. CRS-17’s ISS arrival operations will be covered live on NASA TV.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Energy

Tesla Lathrop Megafactory celebrates massive Megapack battery milestone

The Tesla Megapack is the backbone of Tesla Energy’s battery deployments.

Published

on

Credit: Tesla Megapack/X

The Tesla Lathrop Megafactory recently achieved a new milestone. As per the official Tesla Megapack account on X, the Lathrop Megafactory has produced its 15,000th Megapack 2 XL battery.

15,000 Megapack Batteries

Tesla celebrated the milestone with a photo of the Lathrop Megafactory team posing with a freshly produced Megapack battery. To commemorate the event, the team held balloons that spelled out “15,000” as they posed for the photo.

The Tesla Megapack is the backbone of Tesla Energy’s battery deployments. Designed for grid-scale applications, each Megapack offers 3.9 MWh of energy and 1.9 MW of power. The battery is extremely scalable, making it perfect for massive energy storage projects.

More Megafactories

The Lathrop Megafactory is Tesla’s first dedicated facility for its flagship battery storage system. It currently stands as the largest utility-scale battery factory in North America. The facility is capable of producing 10,000 Megapack batteries every year, equal to 40 GWh of clean energy storage.

Thanks to the success of the Megapack, Tesla has expanded its energy business by building and launching the Shanghai Megafactory, which is also expected to produce 40 GWh of energy storage per year. The ramp of the Shanghai Megafactory is quite impressive, with Tesla noting in its Q1 2025 Update Letter that the Shanghai Megafactory managed to produce over 100 Megapack batteries in the first quarter alone.

Advertisement

Tesla Energy’s Potential

During the first quarter earnings call, CEO Elon Musk stated that the Megapack is extremely valuable to the energy industry. 

“The Megapack enables utility companies to output far more total energy than would otherwise be the case… This is a massive unlock on total energy output of any given grid over the course of a year. And utility companies are beginning to realize this and are buying in our Megapacks at scale,” Musk said.

Continue Reading

News

Tesla launches “TeslaVision” video contest to celebrate Model Y deliveries

The program marks a revival of Tesla’s popular Project Loveday initiative back in 2017.

Published

on

Credit: Tesla Asia/X

Tesla has announced the TeslaVision Contest, a global video showcase inviting fans and owners to highlight the impact of the company’s vehicles on people. 

The program marks a revival of its Project Loveday initiative in 2017, which was extremely well-received by the electric vehicle community. 

A Contest to Celebrate the New Model Y

As per the TeslaVision contest’s official website, the program is being rolled out to commemorate the launch and deliveries of the new Model Y across all continents. Thus, the contest could be seen as a global celebration and showcase of owners and fans who made Tesla the household brand that it has become today.

Participants are tasked with creating a 90-second or shorter video demonstrating how Tesla vehicles provide “more freedom, more safety, more fun, more convenience.” Submissions must be uploaded to YouTube and shared on X and Instagram with the tag @Tesla and the phrase “TeslaVision contest.” 

Videos must align with Tesla’s mission to accelerate sustainable energy, be suitable for all ages, and avoid references to non-Tesla brands. English text or voice-overs are required, and entrants must relinquish rights to their content for Tesla’s commercial use.

Advertisement

A Big Prize Awaits

When Tesla launched Project Loveday in 2017, the company noted that the contest’s winner would receive an all-expenses paid invitation to an upcoming Tesla product launch. For TeslaVision, the grand prize is a lot more tangible, with the winner receiving a new Model Y AWD. They will also get an all-expenses-paid trip to Gigafactory Texas. Second and third-place winners will also receive a Giga Texas tour. 

Finalists will be selected based on creativity, originality, relevance to the prompt, and entertainment value. Tesla will shortlist 100 videos, with the top 10 subject to public voting to influence the final judging. The contest is open to legal residents of the United States, Mexico, and Canada, aged 18 or older, with a valid driver’s license and Tesla account. No purchase is necessary, though entries are limited to just one per person. 

Continue Reading

News

Starlink India launch gains traction with telecom license approval  

Starlink just secured its telecom license in India! High-speed satellite internet could go live in 2 months.

Published

on

starlink-spain-portugal-blackout
(Credit: Starlink)

Starlink India’s launch cleared a key regulatory hurdle after securing a long-awaited license from the country’s telecom ministry. Starlink’s license approval in India paves the way for commercial operations to begin, marking a significant milestone after a three-year wait.

The Department of Telecommunications granted Starlink a Global Mobile Personal Communication by Satellite (GMPCS) license, enabling it to roll out its high-speed internet service. Local reports hinted that Starlink plans to launch its services within the next two months. Starlink India’s services are expected to be priced at ₹3,000 per month for unlimited data. Starlink service would require a ₹33,000 hardware kit, including a dish and router.

“Starlink is finally ready to enter the Indian market,” sources familiar with the rollout plans confirmed, noting a one-month free trial for new users.

Starlink’s low-Earth orbit satellite network promises low-latency, high-speed internet that is ideal for rural India, border areas, and hilly terrains. With over 7,000 satellites in orbit and millions of global users, Starlink aims to bridge India’s digital divide, especially in areas with limited traditional broadband.

Starlink has forged distribution partnerships with Indian telecom giants Reliance Jio and Bharti Airtel to streamline deployment and retail logistics. However, the company still awaits spectrum allocation and final clearances from India’s space regulator, IN-SPACe, and national security agencies before its full launch, expected before August 2025.

Advertisement

India’s satellite internet market is becoming increasingly competitive, with Starlink joining rivals like OneWeb and Jio Satellite Communications. While Starlink positions itself as a premium offering, its entry has sparked debate among domestic telecom operators over spectrum pricing.

Local reports noted that other players in the industry have raised concerns over the lower regulatory fees proposed for satellite firms compared to terrestrial operators, highlighting tensions in the sector.

Starlink India’s launch represents a transformative step toward expanding internet access in one of the world’s largest markets. Starlink could redefine connectivity for millions in underserved regions by leveraging its advanced satellite technology and strategic partnerships. As the company navigates remaining regulatory steps, its timely rollout could set a new standard for satellite internet in India, intensifying competition and driving innovation in the telecom landscape.

Continue Reading

Trending