Connect with us

News

SpaceX’s Cargo Dragon spacecraft nears space station with 2.5 tons of cargo

Cargo Dragon C112 departs the ISS after completing CRS-16, the capsule's second orbital mission. A new Cargo Dragon is scheduled to arrive on May 6th. (NASA)

Published

on

Following a successful May 4th launch atop Falcon 9, SpaceX’s latest Cargo Dragon spacecraft is just a few hours away from starting its International Space Station (ISS) berthing sequence.

Scheduled to begin around 5:30 am EDT (09:30 UTC), SpaceX operations staff will command Dragon to continue a cautious ISS approach. Several hours later, the spacecraft will be quite literally grabbed by station astronauts and gently berthed with one of the space station’s several Common Berthing Mechanism (CBM) ports. Once Cargo Dragon has been safely joined with the ISS, the station’s crew of astronauts can begin the intensive process of unpacking more than 1500 kg (3300 lb) of pressurized cargo, including dozens of time-sensitive and complex science experiments.

Aside from the 1.5 tons of cargo contained inside Dragon’s climate-controlled cabin, ISS astronauts and ground-based NASA controllers will again use the space station’s robotic Canadarm2 manipulator to extract two large unpressurized payloads from Dragon’s trunk. The ‘flagship’ instrument of CRS-17 is NASA’s Orbiting Carbon Observatory-3 (OCO-3), an upgraded follow-on to OCO-2 that should dramatically improve the quantity and quality of data available on the distribution of carbon in the Earth’s atmosphere. The second trunk-stashed payload is known as STP-H6 and is carrying around half a dozen distinct experiments.

The CRS-17 spacecraft departed Falcon 9’s upper stage at the crack of orbital dawn and offered a well-lit view of OCO-3 and STP-H6 in its trunk. (SpaceX)

Both STP-H6 and OCO-3 will be installed on the outside of the space station with the help of Canadarm2, an extremely useful capability that limits the need for astronauts to suit up and perform risky and time-consuming EVAs (extra-vehicular activities) outside the ISS. With its trunk emptied, Cargo Dragon will eventually discard the section to burn up in Earth’s atmosphere just before the reusable capsule begins its own reentry.

Unlike several other spacecraft with service sections, both proposed, flying, or retired, SpaceX’s Dragon spacecraft strive to minimize the complexity and cost of their expendable service sections. For both Cargo and Crew Dragon, the trunk serves as a structural adapter for unpressurized payloads and the Falcon-Dragon interface, hosts solar arrays and radiators, and doesn’t do much else. All propulsion, plumbing, and major avionics are kept within the capsule to maximize reusability.

Defining “slow and steady”

The process of berthing or docking with the ISS is a fundamentally cautious thing, developed by NASA, Roscosmos, and other international partners through forced and painful trial and error. In short, the road to today’s cautious procedures has been paved with countless failures and close calls over decades of space activity. For Cargo Dragon, the process involves berthing, more passive and less complex than docking. Outside of a dozen or so meters, the processes begin quite similarly. Cargo Dragon (Dragon 1) will very slowly approach the station’s several-hundred-meter keep out zone, typically no faster than a few m/s (mph).

Then follows a back-and-forth process of stop and go, in which SpaceX commands Dragon forward, halts at set locations, verifies performance and station readiness with NASA, and repeat. Once within 10 or so meters of the ISS, Dragon will begin carefully stationkeeping, essentially a version of formation flying without a hint of aerodynamic forces. ISS astronauts will then command the Canadarm2 robotic arm toward a sort of target/handle combo located on the spacecraft. The arm follows similar stop-start procedures before finally grappling Dragon, at which point the astronauts in command are legally required (/s) to quip something along the lines of “We’ve caught ourselves a Dragon!”

Cargo Dragon capsule C113 and its expendable trunk depart the ISS after successfully completing their CRS-12 resupply mission in September 2017. (NASA)
CRS-17 Cargo Dragon capsule C113 has flown once before, completing the CRS-12 orbital resupply mission in September 2017. (NASA)

From start to finish, the process takes about 1.5 hours under optimal conditions. Around 2.5 hours after that, Canadarm2 will physically berth Dragon with one of several ISS berthing ports. Soon after, station astronauts can open Dragon’s hatch, snag some fresh goodies, and begin the unpacking process. CRS-17’s ISS arrival operations will be covered live on NASA TV.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Elon Musk’s xAI celebrates nearly 3,000 headcount at Memphis site

The update came in a post from the xAI Memphis account on social media platform X.

Published

on

Credit: xAI Memphis

xAI has announced that it now employs nearly 3,000 people in Memphis, marking more than two years of local presence in the city amid the company’s supercomputing efforts. 

The update came in a post from the xAI Memphis account on social media platform X.

In a post on X, xAI’s Memphis branch stated it has been part of the community for over two years and now employs “almost 3,000 locally to help power Grok.” The post was accompanied by a photo of the xAI Memphis team posing for a rather fun selfie. 

“xAI is proud to be a member of the Memphis community for over two years. We now employ almost 3,000 locally to help power @Grok. From electricians to engineers, cooks to construction — we’re grateful for everyone on our team!” the xAI Memphis’ official X account wrote. 

Advertisement

xAI’s Memphis facilities are home to Grok’s foundational supercomputing infrastructure, including Colossus, a large-scale AI training cluster designed to support the company’s advanced models. The site, located in South Memphis, was announced in 2024 as the home of one of the world’s largest AI compute facilities.

The first phase of Colossus was built out in record time, reaching its initial 100,000 GPU operational status in just 122 days. Industry experts such as Nvidia CEO Jensen Huang noted that this was significantly faster than the typical 2-to-4-year timeline for similar projects.

xAI chose Memphis for its supercomputing operations because of the city’s central location, skilled workforce, and existing industrial infrastructure, as per the company’s statements about its commitment to the region. The initiative aims to create hundreds of permanent jobs, partner with local businesses, and contribute to economic and educational efforts across the area.

Colossus is intended to support a full training pipeline for Grok and future models, with xAI planning to scale the site to millions of GPUs.

Advertisement
Continue Reading

News

Ford embraces Tesla-style gigacastings and Cybertruck’s 48V architecture

Ford Motor Company’s next-generation electric vehicles will adopt technologies that were first commercialized by the Tesla Cybertruck.

Published

on

Credit: Tesla

Ford Motor Company’s next-generation electric vehicles will adopt technologies that were first commercialized by the Tesla Cybertruck, such as the brutalist all-electric pickup’s 48-volt electrical architecture and its gigacastings. 

The shift is expected to start with a roughly $30,000 small electric pickup that is expected to be released in 2027, which is part of Ford’s $5 billion investment in its new Universal EV platform, as noted in a CNBC report.

Ford confirmed that its upcoming EV platform will move away from the traditional 12-volt system long used across the auto industry. Instead, it will implement a 48-volt electrical architecture that draws power directly from the vehicle’s high-voltage battery.

Tesla was the first automaker to bring a 48-volt system to U.S. consumers with the Cybertruck in 2023. The architecture reduces wiring bulk, lowers weight, and improves electrical efficiency. It also allows power to be stepped down to 12 volts through new electronic control units when needed.

Alan Clarke, Ford’s executive director of advanced EV development and a former Tesla engineer, called 48-volt systems “the future of automotive” due to their lower costs and smaller wiring requirements. Ford stated that the wiring harness in its new pickup will be more than 4,000 feet shorter and 22 pounds lighter than that of its first-generation electric SUV.

Advertisement

Apart from the Cybertruck’s 48-volt architecture, Ford is also embracing Tesla-style gigacastings for its next-generation EVs. Ford stated that its upcoming electric vehicle will use just two major structural front and rear castings, compared with 146 comparable components in the current gas-powered Maverick.

Ford CEO Jim Farley has described the effort as a “bet” and a “Model T moment” for the company, arguing that system-level innovation is necessary to lower costs and compete globally. “At Ford, we took on the challenge many others have stopped doing. We’re taking the fight to our competition, including the Chinese,” Farley previously stated.

Advertisement
Continue Reading

Energy

Tesla meets Giga New York’s Buffalo job target amid political pressures

Giga New York reported more than 3,460 statewide jobs at the end of 2025, meeting the benchmark tied to its dollar-a-year lease.

Published

on

Credit: Tesla

Tesla has surpassed its job commitments at Giga New York in Buffalo, easing pressure from lawmakers who threatened the company with fines, subsidy clawbacks, and dealership license revocations last year. 

The company reported more than 3,460 statewide jobs at the end of 2025, meeting the benchmark tied to its dollar-a-year lease at the state-built facility.

As per an employment report reviewed by local media, Tesla employed 2,399 full-time workers at Gigafactory New York and 1,060 additional employees across the state at the end of 2025. Part-time roles pushed the total headcount of Tesla’s New York staff above the 3,460-job target.

The gains stemmed in part from a new Long Island service center, a Buffalo warehouse, and additional showrooms in White Plains and Staten Island. Tesla also said it has invested $350 million in supercomputing infrastructure at the site and has begun manufacturing solar panels.

Advertisement

Empire State Development CEO Hope Knight said the agency was “very happy” with Giga New York’s progress, as noted in a WXXI report. The current lease runs through 2029, and negotiations over updated terms have included potential adjustments to job requirements and future rent payments.

Some lawmakers remain skeptical, however. Assemblymember Pat Burke questioned whether the reported job figures have been fully verified. State Sen. Patricia Fahy has also continued to sponsor legislation that would revoke Tesla’s company-owned dealership licenses in New York. John Kaehny of Reinvent Albany has argued that the project has not delivered the manufacturing impact originally promised as well.

Knight, for her part, maintained that Empire State Development has been making the best of a difficult situation. 

“(Empire State Development) has tried to make the best of a very difficult situation. There hasn’t been another use that has come forward that would replace this one, and so to the extent that we’re in this place, the fact that 2,000 families at (Giga New York) are being supported through the activity of this employer. It’s the best that we can have happen,” the CEO noted. 

Advertisement
Continue Reading