News
SpaceX CEO Elon Musk teases white-hot Starship heat shield testing in video
SpaceX CEO Elon Musk has shared a video showing what looks to be the early stages of testing for Starship’s (BFS) unprecedented metallic heat shield, recently described as a double-layered steel sandwich that will be regeneratively cooled by cryogenic liquid methane.
Testing metallic heat shield at 1100C (2000F) @SpaceX pic.twitter.com/frP5eZ5a0z
— Elon Musk (@elonmusk) January 25, 2019
The glowing metal coupon pictured in Musk’s video appears to be heated by the same high-temperature torches SpaceX (and contractors) use to spin-form Falcon 9 and Heavy propellant tank domes and Merlin 1D and MVac engines, potentially explaining the reported 1100C (2000F) the metallic (steel, presumably) heat shield was being heated to. Compared to the temperature range (~1200-1500C) Starship is expected to experience during reentries, 1100C should – according to Musk – be low enough that “no heat shield [is] needed”. If the coupon pictured is an actual double-layered, regen-cooled test article for Starship’s active heat shield, it will need to be torture-tested to 1500C (and likely beyond) to really prove its worth and reliability.
Forming a rocket nozzle pic.twitter.com/QrpcVyHAXr
— Elon Musk (@elonmusk) December 9, 2016
This is more likely an example of rough, ad-hoc testing being used to generally characterize and navigate the early stages of new technology development, hence the improvised testbed of a few ceramic insulation blankets and industrial torches already on-hand at SpaceX’s Hawthorne, CA factory. A hypersonic wind tunnel or arc jet setup is preferable if the goal is to prove out a truly cutting-edge heat shield, but facilities that feature those testbeds are extraordinarily rare, have niche use-cases, and are not cheap to build or operate.
SpaceX’s metallurgy team and thermal protection engineers will thus probably end up at such a facility (likely NASA Ames) to extensively test Starship’s regeneratively-cooled steel heat shield, with tests like those shown off by Musk acting to guide early development up to the point that accurately simulating reentry conditions is necessary or valuable.
In the meantime, SpaceX suffered a bit of a setback when those responsible for properly securing the first Starship prototype’s nose section failed to account for the threat of even mild winds in South Texas. As a consequence, a minor windstorm – with gusts no more than 50-60 mph (80-90 km/h) – toppled the extremely large and light nose section, causing it to crumple on the ground and nearly fold in half under its own weight. Much like the Falcon fairings SpaceX is already familiar with, the Starhopper’s nose/fairing was clearly optimized for very specific loads and did not appear to be a particularly sturdy structure as SpaceX technicians gradually stacked and welded its thin sheet metal sections together through December and January.
Starship Hopper nose cone has been moved ahead of repairs.
📸NSF's BocaChicaGalhttps://t.co/CZ07SqRUgV pic.twitter.com/Zj6AGjAF6R
— NSF – NASASpaceflight.com (@NASASpaceflight) January 23, 2019
Elon Musk indicated that the injured nose cone would take several weeks to repair, likely pushing the beginning of Starhopper’s hop test campaign into late-February or March.
Elon Musk
Starlink achieves major milestones in 2025 progress report
Starlink wrapped up 2025 with impressive growth, adding more than 4.6 million new active customers and expanding service to 35 additional countries, territories, and markets.
Starlink wrapped up 2025 with impressive growth, adding more than 4.6 million new active customers and expanding service to 35 additional countries, territories, and markets. The company also completed deployment of its first-generation Direct to Cell constellation, launching over 650 satellites in just 18 months to enable cellular connectivity.
SpaceX highlighted Starlink’s impressive 2025 progress in an extensive report.
Key achievements from Starlink’s 2025 Progress
Starlink connected over 4.6 million new customers with high-speed internet while bringing service to 35 more regions worldwide in 2025. Starlink is now connecting 9.2 million people worldwide. The service achieved this just weeks after hitting its 8 million customer milestone.
Starlink is now available in 155 markets, including areas that are unreachable by traditional ISPs. As per SpaceX, Starlink has also provided over 21 million airline passengers and 20 million cruise passengers with reliable high-speed internet connectivity during their travels.
Starlink Direct to Cell
Starlink’s Direct to Cell constellation, more than 650 satellites strong, has already connected over 12 million people at least once, marking a breakthrough in global mobile coverage.
Starlink Direct to Cell is currently rolled out to 22 countries and 6 continents, with over 6 million monthly customers. Starlink Direct to Cell also has 27 MNO partners to date.
“This year, SpaceX completed deployment of the first generation of the Starlink Direct to Cell constellation, with more than 650 satellites launched to low-Earth orbit in just 18 months. Starlink Direct to Cell has connected more than 12 million people, and counting, at least once, providing life-saving connectivity when people need it most,” SpaceX wrote.
News
Tesla Giga Nevada celebrates production of 6 millionth drive unit
To celebrate the milestone, the Giga Nevada team gathered for a celebratory group photo.
Tesla’s Giga Nevada has reached an impressive milestone, producing its 6 millionth drive unit as 2925 came to a close.
To celebrate the milestone, the Giga Nevada team gathered for a celebratory group photo.
6 million drive units
The achievement was shared by the official Tesla Manufacturing account on social media platform X. “Congratulations to the Giga Nevada team for producing their 6 millionth Drive Unit!” Tesla wrote.
The photo showed numerous factory workers assembled on the production floor, proudly holding golden balloons that spelled out “6000000″ in front of drive unit assembly stations. Elon Musk gave credit to the Giga Nevada team, writing, “Congrats on 6M drive units!” in a post on X.
Giga Nevada’s essential role
Giga Nevada produces drive units, battery packs, and energy products. The facility has been a cornerstone of Tesla’s scaling since opening, and it was the crucial facility that ultimately enabled Tesla to ramp the Model 3 and Model Y. Even today, it serves as Tesla’s core hub for battery and drivetrain components for vehicles that are produced in the United States.
Giga Nevada is expected to support Tesla’s ambitious 2026 targets, including the launch of vehicles like the Tesla Semi and the Cybercab. Tesla will have a very busy 2026, and based on Giga Nevada’s activities so far, it appears that the facility will be equally busy as well.
News
Tesla Supercharger network delivers record 6.7 TWh in 2025
The network now exceeds 75,000 stalls globally, and it supports even non-Tesla vehicles across several key markets.
Tesla’s Supercharger Network had its biggest year ever in 2025, delivering a record 6.7 TWh of electricity to vehicles worldwide.
To celebrate its busy year, the official @TeslaCharging account shared an infographic showing the Supercharger Network’s growth from near-zero in 2012 to this year’s impressive milestone.
Record 6.7 TWh delivered in 2025
The bar chart shows steady Supercharger energy delivery increases since 2012. Based on the graphic, the Supercharger Network started small in the mid-2010s and accelerated sharply after 2019, when the Model 3 was going mainstream.
Each year from 2020 onward showed significantly more energy delivery, with 2025’s four quarters combining for the highest total yet at 6.7 TWh.
This energy powered millions of charging sessions across Tesla’s growing fleet of vehicles worldwide. The network now exceeds 75,000 stalls globally, and it supports even non-Tesla vehicles across several key markets. This makes the Supercharger Network loved not just by Tesla owners but EV drivers as a whole.
Resilience after Supercharger team changes
2025’s record energy delivery comes despite earlier 2024 layoffs on the Supercharger team, which sparked concerns about the system’s expansion pace. Max de Zegher, Tesla Director of Charging North America, also highlighted that “Outside China, Superchargers delivered more energy than all other fast chargers combined.”
Longtime Tesla owner and FSD tester Whole Mars Catalog noted the achievement as proof of continued momentum post-layoffs. At the time of the Supercharger team’s layoffs in 2024, numerous critics were claiming that Elon Musk was halting the network’s expansion altogether, and that the team only remained because the adults in the room convinced the juvenile CEO to relent.
Such a scenario, at least based on the graphic posted by the Tesla Charging team on X, seems highly implausible.