News
SpaceX Starship blew its top during rocket fueling test (updated)
Update: SpaceX has released an official statement indicating that Starship Mk1’s November 20th failure came after a decision to intentionally pressurize the rocket prototype to its limits. This likely means that the test was to max flight pressures and not an intentional burst test, so Starship’s dome failure is still a significant concern and was definitely not planned.
More importantly, SpaceX says that it had already decided to retire Starship Mk1 before any kind of flight testing, treating the vehicle as a pathfinder. Instead, SpaceX will build and use Starship Mk3 – the next Boca Chica prototype – for Starship’s first attempted skydiver-style landing and 20 km (12 mi) flight test.
SpaceX statement on the above test and incident: pic.twitter.com/r1ReRYhUhz— Michael Sheetz (@thesheetztweetz) November 21, 2019
SpaceX’s first full-scale Starship prototype has suffered a significant failure during testing, destroying or severely damaging large sections of the rocket. However, SpaceX CEO Elon Musk has already commented on the anomaly and is not all that concerned.
On November 20th, SpaceX – having canceled a planned road closure the day prior – unexpectedly requested a last-second road closure and entered into a much more serious round of testing with Starship Mk1, the rocket’s first full-scale prototype. This followed testing on November 18th that concluded with Starship Mk1’s very first ‘breath’ – some venting activity near the end of a tank proof test. SpaceX technicians spent the next 36 or so hours inspecting and working on Mk1, presumably looking for and patching minor leaks along its tank section.
The November 20th testing progressed far faster than the previous round of tests and Starship Mk1 was quickly venting again. Soon after that, frost began to appear on the exterior of its steel liquid oxygen and methane tanks, a telltale sign that some form of cryogenic testing was ongoing. Based on a distinct lack of activity at the nearby flare stack, SpaceX was using liquid oxygen (LOX) or liquid nitrogen (LN2) to verify that Starship performs as expected when filled with supercool propellant.
After initial venting and visible frost formation, SpaceX appeared to push forward, rapidly loading Starship Mk1 with LOX or LN2. This progress was easily visible thanks to the fact that the mass and pressure of all that cryogenic liquid made quick work of the slight imperfections on the exterior of Starship’s steel hull, turning the vehicle’s reflection from a speckled patchwork to an almost mirror-like finish. Roughly half an hour later, the otherwise peaceful scene was interrupted by the rapid failure of Starship Mk1’s upper LOX tank dome, instantly thrown several hundred feet into the air.
Seconds later, the crumpled upper half of Starship Mk1’s tank section appeared out of the clouds created and began hemorrhaging a huge volume of liquid oxygen, immediately boiling and vaporizing as it was exposed to the Earth’s comparatively white-hot atmosphere. Impressively, Starship appeared to remain functional after its top quite literally blew off, and the vehicle rapidly detanked and appeared to safe itself. Some ten minutes after the overpressure event, the freed liquid oxygen had boiled to nothing and Starship appeared to be quiet.





By all appearances, Starship Mk1 appeared to perform extremely well as an integrated system up to the point that its upper tank dome failed. The first frame from LabPadre’s stream with anything visibly amiss explicitly implicates the weld connecting the LOX dome to the cylindrical body of Starship’s LOX tank, point to a bad weld joint as the likeliest source of the failure. Although that hardware failure is unfortunate, Mk1’s loss will hopefully guide improvements in Starship’s design and manufacturing procedures.
Moving forward
Minutes after the anomaly was broadcast on several unofficial livestreams of SpaceX’s Boca Chica facilities, SpaceX CEO Elon Musk acknowledged Starship Mk1’s failure in a tweet, telegraphing a general lack of worry. Of note, Musk indicated that Mk1 was valuable mainly as a manufacturing pathfinder, entirely believable but also partially contradicting his September 2019 presentation, in which he pretty clearly stated that Mk1 would soon be launched to ~20 km to demonstrate Starship’s exotic new skydiver landing strategy.
Musk says that instead of repairing Starship Mk1, SpaceX’s Boca Chica team will move directly to Starship Mk3, a significantly more advanced design that has benefitted from the numerous lessons learned from building and flying Starhopper and fabricating Starship Mk1. The first Starship Mk3 ring appears to have already been prepared, but SpaceX’s South Texas focus has clearly been almost entirely on preparing Starship Mk1 for wet dress rehearsal, static fire, and flight tests. After today’s failure, it sounds like Mk1 will most likely be retired early and replaced as soon as possible by Mk3.
Above all else, the most important takeaway from today’s Starship Mk1 anomaly is that the vehicle was a very early prototype and SpaceX likely wants to have vehicle failures occur on the ground or in-flight. As long as no humans are at risk, pushing Starship to failure (or suffering unplanned failures like today’s) can only serve to benefit and improve the vehicle’s design, especially when the failed hardware can be recovered intact (ish) and carefully analyzed.
A step further, SpaceX is simultaneously building a second (and third) Starship prototype at its companion Cocoa, Florida facilities, and Starship Mk2 is nearly finished. Coincidentally, technicians installed its last tank dome – the same dome that failed on Mk1 – just days ago, and any insight that the Boca Chica team can gather from Mk1’s troubles will almost certainly be applied to Mk2, whether that means reinforcing its existing domes or fully replacing the upper dome with an improved design.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
News
Tesla’s Apple CarPlay ambitions are not dead, they’re still in the works
For what it’s worth, as a Tesla owner, I don’t particularly see the need for CarPlay, as I have found the in-car system that the company has developed to be superior. However, many people are in love with CarPlay simply because, when it’s in a car that is capable, it is really great.
Tesla’s Apple CarPlay ambitions appeared to be dead in the water after a large amount of speculation late last year that the company would add the user interface seemed to cool down after several weeks of reports.
However, it appears that CarPlay might make its way to Tesla vehicles after all, as a recent report seems to indicate that it is still being worked on by software teams for the company.
The real question is whether it is truly needed or if it is just a want by so many owners that Tesla is listening and deciding to proceed with its development.
Back in November, Bloomberg reported that Tesla was in the process of testing Apple CarPlay within its vehicles, which was a major development considering the company had resisted adopting UIs outside of its own for many years.
Nearly one-third of car buyers considered the lack of CarPlay as a deal-breaker when buying their cars, a study from McKinsey & Co. outlined. This could be a driving decision in Tesla’s inability to abandon the development of CarPlay in its vehicles, especially as it lost a major advantage that appealed to consumers last year: the $7,500 EV tax credit.
Tesla owners propose interesting theory about Apple CarPlay and EV tax credit
Although we saw little to no movement on it since the November speculation, Tesla is now reportedly in the process of still developing the user interface. Mark Gurman, a Bloomberg writer with a weekly newsletter, stated that CarPlay is “still in the works” at Tesla and that more concrete information will be available “soon” regarding its development.
While Tesla already has a very capable and widely accepted user interface, CarPlay would still be an advantage, considering many people have used it in their vehicles for years. Just like smartphones, many people get comfortable with an operating system or style and are resistant to using a new one. This could be a big reason for Tesla attempting to get it in their own cars.
Tesla gets updated “Apple CarPlay” hack that can work on new models
For what it’s worth, as a Tesla owner, I don’t particularly see the need for CarPlay, as I have found the in-car system that the company has developed to be superior. However, many people are in love with CarPlay simply because, when it’s in a car that is capable, it is really great.
It holds one distinct advantage over Tesla’s UI in my opinion, and that’s the ability to read and respond to text messages, which is something that is available within a Tesla, but is not as user-friendly.
With that being said, I would still give CarPlay a shot in my Tesla. I didn’t particularly enjoy it in my Bronco Sport, but that was because Ford’s software was a bit laggy with it. If it were as smooth as Tesla’s UI, which I think it would be, it could be a really great addition to the vehicle.
News
Tesla brings closure to Model Y moniker with launch of new trim level
With the launch of a new trim level for the Model Y last night, something almost went unnoticed — the loss of a moniker that Tesla just recently added to a couple of its variants of the all-electric crossover.
Tesla launched the Model Y All-Wheel-Drive last night, competitively priced at $41,990, but void of the luxurious features that are available within the Premium trims.
Upon examination of the car, one thing was missing, and it was noticeable: Tesla dropped the use of the “Standard” moniker to identify its entry-level offerings of the Model Y.
The Standard Model Y vehicles were introduced late last year, primarily to lower the entry price after the U.S. EV tax credit changes were made. Tesla stripped some features like the panoramic glass roof, premium audio, ambient lighting, acoustic-lined glass, and some of the storage.
Last night, it simply switched the configurations away from “Standard” and simply as the Model Y Rear-Wheel-Drive and Model Y All-Wheel-Drive.
There are three plausible reasons for this move, and while it is minor, there must be an answer for why Tesla chose to abandon the name, yet keep the “Premium” in its upper-level offerings.
“Standard” carried a negative connotation in marketing
Words like “Standard” can subtly imply “basic,” “bare-bones,” or “cheap” to consumers, especially when directly contrasted with “Premium” on the configurator or website. Dropping it avoids making the entry-level Model Y feel inferior or low-end, even though it’s designed for affordability.
Tesla likely wanted the base trim to sound neutral and spec-focused (e.g., just “RWD” highlights drivetrain rather than feature level), while “Premium” continues to signal desirable upgrades, encouraging upsells to higher-margin variants.
Simplifying the overall naming structure for less confusion
The initial “Standard vs. Premium” split (plus Performance) created a somewhat clunky hierarchy, especially as Tesla added more variants like Standard Long Range in some markets or the new AWD base.
Removing “Standard” streamlines things to a more straightforward progression (RWD → AWD → Premium RWD/AWD → Performance), making the lineup easier to understand at a glance. This aligns with Tesla’s history of iterative naming tweaks to reduce buyer hesitation.
Elevating brand perception and protecting perceived value
Keeping “Premium” reinforces that the bulk of the Model Y lineup (especially the popular Long Range models) remains a premium product with desirable features like better noise insulation, upgraded interiors, and tech.
Eliminating “Standard” prevents any dilution of the Tesla brand’s upscale image—particularly important in a competitive EV market—while the entry-level variants can quietly exist as accessible “RWD/AWD” options without drawing attention to them being decontented versions.
You can check out the differences between the “Standard” and “Premium” Model Y vehicles below:
@teslarati There are some BIG differences between the Tesla Model Y Standard and Tesla Model Y Premium #tesla #teslamodely ♬ Sia – Xeptemper
Elon Musk
Tesla bull sees odds rising of Tesla merger after Musk confirms SpaceX-xAI deal
Dan Ives of Wedbush Securities wrote on Tuesday that there is a growing chance Tesla could be merged in some form with SpaceX and xAI over the next 12 to 18 months.
A prominent Tesla (NASDAQ:TSLA) bull has stated that the odds are rising that Tesla could eventually merge with SpaceX and xAI, following Elon Musk’s confirmation that the private space company has combined with his artificial intelligence startup.
Dan Ives of Wedbush Securities wrote on Tuesday that there is a growing chance Tesla could be merged in some form with SpaceX and xAI over the next 12 to 18 months.
“In our view there is a growing chance that Tesla will eventually be merged in some form into SpaceX/xAI over time. The view is this growing AI ecosystem will focus on Space and Earth together…..and Musk will look to combine forces,” Ives wrote in a post on X.
Ives’ comments followed confirmation from Elon Musk late Monday that SpaceX has merged with xAI. Musk stated that the merger creates a vertically integrated platform that combines AI, rockets, satellite internet, communications, and real-time data.
In a post on SpaceX’s official website, Elon Musk added that the combined company is aimed at enabling space-based AI compute, stating that within two to three years, space could become the lowest-cost environment for generating AI processing power. The transaction reportedly values the combined SpaceX-xAI entity at roughly $1.25 trillion.
Tesla, for its part, has already increased its exposure to xAI, announcing a $2 billion investment in the startup last week in its Q4 and FY 2025 update letter.
While merger speculation has intensified, notable complications could emerge if SpaceX/xAI does merge with Tesla, as noted in a report from Investors Business Daily.
SpaceX holds major U.S. government contracts, including with the Department of Defense and NASA, and xAI’s Grok is being used by the U.S. Department of War. Tesla, for its part, maintains extensive operations in China through Gigafactory Shanghai and its Megapack facility.