Connect with us

News

SpaceX changes the game with 100th rocket launch

SpaceX has successfully reopened the US Eastern polar launch corridor with Falcon 9 B1059's fourth launch and landing. (Richard Angle)

Published

on

Ending exactly five months of delays, SpaceX has completed the first polar launch from Florida in more than half a century, potentially changing the game for the US launch industry.

Coincidentally SpaceX’s 100th launch ever, the SAOCOM 1B mission’s success could significantly redefine what current and future US launch providers are able to achieve with a single launch pad. To pull it off, SpaceX managed to thread the needle between Florida storm cells, avoiding the same fate as the Starlink-11 mission that was scrubbed by inclement weather earlier today. Prior to that delay, SpaceX was targeting – and, based on past performance, would have likely achieved – two orbital Falcon 9 launches and landings in less than ten hours, what would have easily been the quickest back-to-back commercial missions in history.

At 7:18 pm EDT (UTC-4), Falcon 9 booster B1059 lifted off from Cape Canaveral Air Force Station (CCAFS) Launch Complex 40 (LC-40) for the fourth time in nine months. The rocket performed perfectly, sending an expendable Falcon 9 second stage (S2), a payload fairing, SAOCOM 1B, and two rideshare payloads on their way to orbit. Eight minutes after launch and roughly six minutes after stage separate, B1059 successfully returned to SpaceX’s Cape Canaveral Landing Zone (LZ-1) for a soft landing, becoming the first booster to do so in almost six months.

Falcon 9 B1059’s titanium grid fins slice through the humid Florida air shortly before touchdown. (Richard Angle)

A brisk four minutes after Falcon 9’s first second stage engine cut-off (SECO) and orbital insertion, the rocket gently deployed the ~3000 kg (~6600 lb) SAOCOM 1B satellite. The Argentinian spacecraft extended its own solar arrays and began generating power just a few minutes later.

More than an hour after launch, rideshare payloads GNOMES-1 and Tyvak-0172 deployed as planned, officially completing the Falcon family’s 93rd fully-successful launch. Falcon 9 B1059’s fourth landing was also SpaceX’s 58th since the first successful booster recovery in December 2015.

Advertisement
Falcon 9 deploys SAOCOM 1B. (SpaceX)
(Richard Angle)
SpaceX Falcon 9 booster B1059 lands at LZ-1, backlit by Blue Origin’s unfinished orbital launch pad. (SpaceX)

While an otherwise routine and unexceptional mission, SpaceX has now proven that it’s possible for commercial launch providers to fly to polar orbits – orbits centered around Earth’s poles – from the East Coast. Since 1969, Cape Canaveral (and, far less often, Virginia’s Wallops) launch facilities have offered access to low Earth orbits, geostationary orbits, medium Earth orbits, lunar orbits, and interplanetary trajectories – just shy of anything but polar or sun synchronous orbit (SSO). To reach those orbits, launch providers have traditionally built entirely separate launch facilities on the US West Coast, mostly limited to California’s Vandenberg Air Force Base (VAFB) or, much less often, Kodiak, Alaska.

Building launch pads from scratch – or even reusing portions of old pads – is an extremely expensive and time-consuming endeavor, often taking at least 12-24 months and tens to hundreds of millions of dollars. Blue Origin, for reference, is likely spending $500 million to $1 billion or more to build a Falcon Heavy-class launch pad from scratch for its first orbital rocket, New Glenn. While much smaller rockets from startups like Firefly and Relativity need proportionally smaller and cheaper launch pads, pad construction still end ups being a major expense and hurdle for new entrants. Both Firefly and Relativity have already publicized plans to build two separate launch facilities at Vandenberg and Cape Canaveral.

(Richard Angle)
(Richard Angle)
Vulcan, New Glenn, and Falcon 9 could all benefit immensely from a reopened Eastern polar launch corridor. (Teslarati – ULA/NGIS/Blue Origin/SpaceX)

Now, given enough excess performance for any given payload, it may well be possible for companies like them – particularly Relativity – to move directly to Florida without having to sacrifice polar and SSO launch capabilities that are most commonly used by small satellites. For Blue Origin, it could potentially save the company years of work and hundreds of millions of dollars if it can avoid having to build a second New Glenn launch pad in California. ULA has already expressed interest in exploring East Coast polar launches for its next-generation Vulcan Centaur rocket, potentially preventing the need for expensive changes to one of its California launch pads.

It remains to be seen if the US military will ultimately certify the new Eastern polar launch corridor for its high-value payloads and it’s unclear if the new corridor has any major inclination or cadence restrictions, but it’s safe to say that existing providers are going to eagerly take advantage of this new capability.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla already has a complete Robotaxi model, and it doesn’t depend on passenger count

That scenario was discussed during the company’s Q4 and FY 2025 earnings call, when executives explained why the majority of Robotaxi rides will only involve one or two people.

Published

on

Credit: @AdanGuajardo/X

Tesla already has the pieces in place for a full Robotaxi service that works regardless of passenger count, even if the backbone of the program is a small autonomous two-seater. 

That scenario was discussed during the company’s Q4 and FY 2025 earnings call, when executives explained why the majority of Robotaxi rides will only involve one or two people.

Two-seat Cybercabs make perfect sense

During the Q&A portion of the call, Tesla Vice President of Vehicle Engineering Lars Moravy pointed out that more than 90% of vehicle miles traveled today involve two or fewer passengers. This, the executive noted, directly informed the design of the Cybercab. 

“Autonomy and Cybercab are going to change the global market size and mix quite significantly. I think that’s quite obvious. General transportation is going to be better served by autonomy as it will be safer and cheaper. Over 90% of vehicle miles traveled are with two or fewer passengers now. This is why we designed Cybercab that way,” Moravy said. 

Advertisement

Elon Musk expanded on the point, emphasizing that there is no fallback for Tesla’s bet on the Cybercab’s autonomous design. He reiterated that the autonomous two seater’s production is expected to start in April and noted that, over time, Tesla expects to produce far more Cybercabs than all of its other vehicles combined.

“Just to add to what Lars said there. The point that Lars made, which is that 90% of miles driven are with one or two passengers or one or two occupants, essentially, is a very important one… So this is clearly, there’s no fallback mechanism here. It’s like this car either drives itself or it does not drive… We would expect over time to make far more CyberCabs than all of our other vehicles combined. Given that 90% of distance driven or distance being distance traveled exactly, no longer driving, is one or two people,” Musk said. 

Tesla’s robotaxi lineup is already here

The more interesting takeaway from the Q4 and FY 2025 earnings call is the fact that Tesla does not need the Cybercab to serve every possible passenger scenario, simply because the company already has a functional Robotaxi model that scales by vehicle type.

The Cybercab will handle the bulk of the Robotaxi network’s trips, but for groups that need three or four seats, the Model Y fills that role. For higher-end or larger-family use cases, the extended-wheelbase Model Y L could cover five or six occupants, provided that Elon Musk greenlights the vehicle for North America. And for even larger groups or commercial transport, Tesla has already unveiled the Robovan, which could seat over ten people.

Advertisement

Rather than forcing one vehicle to satisfy every use case, Tesla’s approach mirrors how transportation works today. Different vehicles will be used for different needs, while unifying everything under a single autonomous software and fleet platform.

Continue Reading

News

Tesla Cybercab spotted with interesting charging solution, stimulating discussion

The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.

Published

on

Credit: What's Inside | X

Tesla Cybercab units are being tested publicly on roads throughout various areas of the United States, and a recent sighting of the vehicle’s charging port has certainly stimulated some discussions throughout the community.

The Cybercab is geared toward being a fully-autonomous vehicle, void of a steering wheel or pedals, only operating with the use of the Full Self-Driving suite. Everything from the driving itself to the charging to the cleaning is intended to be operated autonomously.

But a recent sighting of the vehicle has incited some speculation as to whether the vehicle might have some manual features, which would make sense, but let’s take a look:

The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.

Now, it is important to remember these are prototype vehicles, and not the final product. Additionally, Tesla has said it plans to introduce wireless induction charging in the future, but it is not currently available, so these units need to have some ability to charge.

However, there are some arguments for a charging system like this, especially as the operation of the Cybercab begins after production starts, which is scheduled for April.

Wireless for Operation, Wired for Downtime

It seems ideal to use induction charging when the Cybercab is in operation. As it is for most Tesla owners taking roadtrips, Supercharging stops are only a few minutes long for the most part.

The Cybercab would benefit from more frequent Supercharging stops in between rides while it is operating a ride-sharing program.

Tesla wireless charging patent revealed ahead of Robotaxi unveiling event

However, when the vehicle rolls back to its hub for cleaning and maintenance, standard charging, where it is plugged into a charger of some kind, seems more ideal.

In the 45-minutes that the car is being cleaned and is having maintenance, it could be fully charged and ready for another full shift of rides, grabbing a few miles of range with induction charging when it’s out and about.

Induction Charging Challenges

Induction charging is still something that presents many challenges for companies that use it for anything, including things as trivial as charging cell phones.

While it is convenient, a lot of the charge is lost during heat transfer, which is something that is common with wireless charging solutions. Even in Teslas, the wireless charging mat present in its vehicles has been a common complaint among owners, so much so that the company recently included a feature to turn them off.

Production Timing and Potential Challenges

With Tesla planning to begin Cybercab production in April, the real challenge with the induction charging is whether the company can develop an effective wireless apparatus in that short time frame.

It has been in development for several years, but solving the issue with heat and energy loss is something that is not an easy task.

In the short-term, Tesla could utilize this port for normal Supercharging operation on the Cybercab. Eventually, it could be phased out as induction charging proves to be a more effective and convenient option.

Continue Reading

News

Tesla confirms that it finally solved its 4680 battery’s dry cathode process

The suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Published

on

tesla 4680
Image used with permission for Teslarati. (Credit: Tom Cross)

Tesla has confirmed that it is now producing both the anode and cathode of its 4680 battery cells using a dry-electrode process, marking a key breakthrough in a technology the company has been working to industrialize for years. 

The update, disclosed in Tesla’s Q4 and FY 2025 update letter, suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Dry cathode 4680 cells

In its Q4 and FY 2025 update letter, Tesla stated that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process. The confirmation addresses long-standing questions around whether Tesla could bring its dry cathode process into sustained production.

The disclosure was highlighted on X by Bonne Eggleston, Tesla’s Vice President of 4680 batteries, who wrote that “both electrodes use our dry process.”

Advertisement

Tesla first introduced the dry-electrode concept during its Battery Day presentation in 2020, pitching it as a way to simplify production, reduce factory footprint, lower costs, and improve energy density. While Tesla has been producing 4680 cells for some time, the company had previously relied on more conventional approaches for parts of the process, leading to questions about whether a full dry-electrode process could even be achieved.

4680 packs for Model Y

Tesla also revealed in its Q4 and FY 2025 Update Letter that it has begun producing battery packs for certain Model Y vehicles using its in-house 4680 cells. As per Tesla: 

“We have begun to produce battery packs for certain Model Ys with our 4680 cells, unlocking an additional vector of supply to help navigate increasingly complex supply chain challenges caused by trade barriers and tariff risks.”

The timing is notable. With Tesla preparing to wind down Model S and Model X production, the Model Y and Model 3 are expected to account for an even larger share of the company’s vehicle output. Ensuring that the Model Y can be equipped with domestically produced 4680 battery packs gives Tesla greater flexibility to maintain production volumes in the United States, even as global battery supply chains face increasing complexity.

Advertisement
Continue Reading