Connect with us

News

SpaceX operational astronaut launch debut back on track after “nail polish” delay

SpaceX's Crew-1 NASA astronauts pose in front of the Crew Dragon that will ferry them to the International Space Station just days before the spacecraft shipped to Florida. (SpaceX)

Published

on

In a new NASA briefing, SpaceX vice president of build and flight reliability Hans Koenigsmann was able to explain in far more detail why a recent last-second Falcon 9 launch abort happened and how it wound up delaying the company’s first operational astronaut launch.

Now scheduled to lift off no earlier than (NET) 7:49 pm EST (00:49 UTC) on Saturday, November 14th, SpaceX’s Crew Dragon Crew-1 mission was originally expected to launch in late September, October 23rd, and October 31st. On October 2nd, however, a new Falcon 9 booster – sibling to Crew-1’s own new booster – automatically aborted its GPS III SV04 satellite launch attempt just two seconds before liftoff. The rare last-second abort was quickly blamed on “unexpected pressure rise in the turbomachinery gas generator” by CEO Elon Musk.

Likely built side-by-side with faulty GPS III SV04 Falcon 9 booster B1062 at SpaceX’s Hawthorne, California factory, Crew-1 Falcon 9 booster B1061 was almost immediately inspected to search for any commonality once the cause of the abort was better understood.

SpaceX COO and President Gwynne Shotwell stands in front of the Falcon 9 booster that will soon ferry four astronauts to the ISS. (TIME/SpaceX)

Just one week before the latest briefing, NASA human spaceflight program administrator and former Commercial Crew Program manager Kathy Lueders revealed in a statement on Twitter that SpaceX was still analyzing the cause of the abort but had already determined that at least one Crew-1 booster engine would need to be replaced, as well as one engine on Falcon 9 booster B1063.

Crew-1 Falcon 9 booster B1061 arrived in Florida on July 14th. (SpaceX)
Falcon 9 booster B1063 was spotted on its way west from McGregor, Texas to Vandenberg Air Force Base, California in August. (D. Stamos)

Now, during NASA’s October 28th Crew-1 briefing, SpaceX’s Koenigsmann revealed that the company had ultimately decided to replace not one but two of Crew-1 booster B1061’s nine Merlin 1D engines. Thanks to Falcon 9’s namesake nine-engine booster design and SpaceX’s prolific rocket factory, that process was completed extraordinarily quickly, simply requiring the redirection of already qualified Merlin 1D engines from a fairly large pool. Based on Koenigsmann’s phrasing, SpaceX has already installed both replacement engines on the Crew-1 booster.

What, though, caused GPS III SV04’s launch abort and how did that affect Crew-1?

Rocket engine vs. “nail polish”

According to Koenigsmann, in the course of the rapid and complex mechanical and electrical ballet preceding Falcon 9 first stage ignition, the rocket’s autonomous flight computer observed that two of the GPS III SV04 booster’s nine Merlin 1D engines appeared to be running ahead of schedule, so to speak. The computer immediately halted the ignition process to avoid what could have otherwise been a “hard” (i.e. stressful or damaging) start. SpaceX quickly began inspecting the rocket within 24 hours but was unable to detect anything physically or electrically wrong with Falcon 9’s Merlin 1D engines and engine section.

Advertisement
-->
A Merlin 1D engine is inspected and tested in McGregor, Texas. (SpaceX)

Out of an abundance of caution, SpaceX removed both misbehaving engines and shipped them to its McGregor, Texas development and test facilities where – somewhat miraculously – the same premature startup behavior was replicated on the test stand. After a great deal of increasingly granular inspections, SpaceX finally narrowed the likely cause down to a tiny plumbing line feeding one of the engine’s gas generator relief valves. In a seemingly random subset of relatively new Merlin 1D engines, SpaceX eventually discovered that a supplier-provided relief valve line was sometimes clogged by a protective lacquer Koenigsmann likened to “red nail polish.”

A Merlin 1D is prepared at SpaceX’s Hawthorne factory. The small cylindrical tube on the side is the engine’s gas generator. (SpaceX)

Used to selectively exclude parts of the engine tubing during a surface finishing process known as anodization, the lacquer was either unsuccessfully removed on a random selection of engine parts or was accidentally channeled into a blockage by over-enthusiastic cleaning. Ultimately, for whatever, reason that miniscule blockage was enough to cause affected Merlin 1D engines to consistently attempt to ignite a tiny fraction of a second early.

Crucially, when SpaceX discovered the possible cause and cleaned out the blocked plumbing, each previously affected Merlin 1D engine performed perfectly, all but directly confirming both the cause and the cure for Falcon 9’s October 2nd abort.

A Falcon 9 Block 5 booster’s engine section and heat shield. (SpaceX/Discovery)

Astronauts enter quarantine

In anticipation of SpaceX seemingly simple solution to the gas generator problem, NASA Commercial Crew Program manager Steve Stich revealed that SpaceX’s Crew-1 mission astronauts – Shannon Walker, Victor Glover, and Mike Hopkins, and JAXA (Japanese) astronaut Soichi Noguchi – had begun routine prelaunch quarantine procedures in anticipation of a November 14th launch.

NASA astronauts Shannon Walker, Victor Glover, and Mike Hopkins, and JAXA (Japanese) astronaut Soichi Noguchi are nearly set to fly on Crew-1. (SpaceX)
Crew-1 will follow in the fresh footsteps of NASA astronauts Bob Behnken and Doug Hurley’s near-flawless Demo-2 Crew Dragon launch and landing debut. (NASA/Bill Ingalls)

Stich also offered a more specific Crew-1 schedule, beginning with an integrated Falcon 9 and Crew Dragon static fire test NET November 9th and a full dry dress rehearsal on November 11th before the first launch attempt on November 14th. Notably, thanks to coincidental orbital dynamics, a successful launch on November 14th would enable Crew Dragon to raise its orbit and rendezvous with the International Space Station a brisk eight and a half hours after liftoff – three times quicker than the more common 27.5-hour transit.

Stay tuned for updates as the mission’s launch date approaches.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Cybertruck

Tesla updates Cybertruck owners about key Powershare feature

Published

on

Credit: Tesla

Tesla is updating Cybertruck owners on its timeline of a massive feature that has yet to ship: Powershare with Powerwall.

Powershare is a bidirectional charging feature exclusive to Cybertruck, which allows the vehicle’s battery to act as a portable power source for homes, appliances, tools, other EVs, and more. It was announced in late 2023 as part of Tesla’s push into vehicle-to-everything energy sharing, and acting as a giant portable charger is the main advantage, as it can provide backup power during outages.

Cybertruck’s Powershare system supports both vehicle-to-load (V2L) and vehicle-to-home (V2H), making it flexible and well-rounded for a variety of applications.

However, even though the feature was promised with Cybertruck, it has yet to be shipped to vehicles. Tesla communicated with owners through email recently regarding Powershare with Powerwall, which essentially has the pickup act as an extended battery.

Powerwall discharge would be prioritized before tapping into the truck’s larger pack.

However, Tesla is still working on getting the feature out to owners, an email said:

“We’re writing to let you know that the Powershare with Powerwall feature is still in development and is now scheduled for release in mid-2026. 

This new release date gives us additional time to design and test this feature, ensuring its ability to communicate and optimize energy sharing between your vehicle and many configurations and generations of Powerwall. We are also using this time to develop additional Powershare features that will help us continue to accelerate the world’s transition to sustainable energy.”

Owners have expressed some real disappointment in Tesla’s continuous delays in releasing the feature, as it was expected to be released by late 2024, but now has been pushed back several times to mid-2026, according to the email.

Foundation Series Cybertruck buyers paid extra, expecting the feature to be rolled out with their vehicle upon pickup.

Cybertruck’s Lead Engineer, Wes Morrill, even commented on the holdup:

He said that “it turned out to be much harder than anticipated to make powershare work seamlessly with existing Powerwalls through existing wall connectors. Two grid-forming devices need to negotiate who will form and who will follow, depending on the state of charge of each, and they need to do this without a network and through multiple generations of hardware, and test and validate this process through rigorous certifications to ensure grid safety.”

It’s nice to see the transparency, but it is justified for some Cybertruck owners to feel like they’ve been bait-and-switched.

Continue Reading

News

Tesla’s northernmost Supercharger in North America opens

Published

on

Credit: Tesla

Tesla has opened its northernmost Supercharger in Fairbanks, Alaska, with eight V4 stalls located in one of the most frigid cities in the U.S.

Located just 196 miles from the Arctic Circle, Fairbanks’s average temperature for the week was around -12 degrees Fahrenheit. However, there are plenty of Tesla owners in Alaska who have been waiting for more charging options out in public.

There are only 36 total Supercharger stalls in Alaska, despite being the largest state in the U.S.

Eight Superchargers were added to Fairbanks, which will eventually be a 48-stall station. Tesla announced its activation today:

The base price per kWh is $0.43 at the Fairbanks Supercharger. Thanks to its V4 capabilities, it can charge at speeds up to 325 kW.

Despite being the northernmost Supercharger in North America, it is not even in the Top 5 northernmost Superchargers globally, because Alaska is south of Norway. The northernmost Supercharger is in Honningsvåg, Norway. All of the Top 5 are in the Scandanavian country.

Tesla’s Supercharger expansion in 2025 has been impressive, and although it experienced some early-quarter slowdowns due to V3-to-V4 hardware transitions, it has been the company’s strongest year for deployments.

Through the three quarters of 2025, the company has added 7,753 stations and 73,817 stalls across the world, a 16 percent increase in stations and an 18 percent increase in stalls compared to last year.

Tesla is on track to add over 12,000 stalls for the full year, achieving an average of one new stall every hour, an impressive statistic.

Recently, the company wrapped up construction at its Supercharger Oasis in Lost Hills, California, a 168-stall Supercharger that Tesla Solar Panels completely power. It is the largest Supercharger in the world.

Continue Reading

News

Tesla shocks with latest Robotaxi testing move

Why Tesla has chosen to use a couple of Model S units must have a reason; the company is calculated in its engineering and data collection efforts, so this is definitely more than “we just felt like giving our drivers a change of scenery.”

Published

on

Credit: Sawyer Merritt | X

Tesla Model S vehicles were spotted performing validation testing with LiDAR rigs in California today, a pretty big switch-up compared to what we are used to seeing on the roads.

Tesla utilizes the Model Y crossover for its Robotaxi fleet. It is adequately sized, the most popular vehicle in its lineup, and is suitable for a wide variety of applications. It provides enough luxury for a single rider, but enough room for several passengers, if needed.

However, the testing has seemingly expanded to one of Tesla’s premium flagship offerings, as the Model S was spotted with the validation equipment that is seen entirely with Model Y vehicles. We have written several articles on Robotaxi testing mules being spotted across the United States, but this is a first:

Why Tesla has chosen to use a couple of Model S units must have a reason; the company is calculated in its engineering and data collection efforts, so this is definitely more than “we just felt like giving our drivers a change of scenery.”

It seems to hint that Tesla could add a premium, more luxury offering to its Robotaxi platform eventually. Think about it: Uber has Uber Black, Lyft has Lyft Black. These vehicles and services are associated with a more premium cost as they combine luxury models with more catered transportation options.

Tesla could be testing the waters here, and it could be thinking of adding the Model S to its fleet of ride-hailing vehicles.

Reluctant to remove the Model S from its production plans completely despite its low volume contributions to the overall mission of transitioning the world to sustainable energy, the flagship sedan has always meant something. CEO Elon Musk referred to it, along with its sibling Model X, as continuing on production lines due to “sentimental reasons.”

However, its purpose might have been expanded to justify keeping it around, and why not? It is a cozy, premium offering, and it would be great for those who want a little more luxury and are willing to pay a few extra dollars.

Of course, none of this is even close to confirmed. However, it is reasonable to speculate that the Model S could be a potential addition to the Robotaxi fleet. It’s capable of all the same things the Model Y is, but with more luxuriousness, and it could be the perfect addition to the futuristic fleet.

Continue Reading