Connect with us

News

SpaceX, NASA schedule back-to-back astronaut recovery and launch after delays

Published

on

Poor winter weather on Florida’s East Coast and across the Atlantic Ocean has forced NASA and SpaceX to flip the nominal sequence of events for the imminent back-to-back launch and recovery of two Crew Dragons.

Contrary to preference, SpaceX and NASA’s four Crew-2 astronauts are now scheduled to undock from the International Space Station (ISS) and return to Earth before their replacements (Crew-3) launch to the station. As a result, there will be no on-orbit handoff, meaning that only one NASA astronaut – Mark Vande Hei – will be left alongside cosmonauts Anton Shkaplerov and Pyotr Dubrov to crew and operate the US segment of the ISS until Crew-3’s arrival.

After several delays from an initial October 30th target, Crew-3 astronauts Raja Chari, Thomas Marshburn, Matthias Maurer, and Kayla Barron are scheduled to ride Falcon 9 and Crew Dragon to orbit no earlier than (NET) 9:03pm EST, Wednesday, November 10th (02:03 UTC 13 Nov) – two days after Crew-2 is expected to splash down.

Crew-3 astronauts Matthias Maurer, Thomas Marshburn, Raja Chari, and Kayla Barron have been (mostly) ready for flight since late October. (SpaceX)

Save for a one-day delay from October 30th to October 31st needed to give SpaceX and NASA time to qualify a fixed plumbing leak for crewed spaceflight, all subsequent delays into November have been caused by poor weather – a rather common late fall and winter occurrence in the Atlantic Ocean and southern US. The weather isn’t entirely to blame, though. Crew Dragon, SpaceX, and NASA are also partly responsible due to the extremely strict and narrow range of weather conditions the spacecraft has been certified to operate in.

Worse, a large portion of Dragon’s weather constraints are for hypothetical abort scenarios rather than the nominal launch – not “is it safe to launch?” but “is it safe to launch if something fails catastrophically and Dragon aborts and has to splash down anywhere in a several-dozen-mile corridor stretching the entire length of the Atlantic?” In the case of Crew-3’s launch, the main condition making that vast abort zone a no-go for launch is surface winds.

While aborting an expensive, time-sensitive rocket launch due to ground winds might bring to mind some kind of storm with vast swells and torrential rain, the reality is that NASA has only rated Crew Dragon to splash down when surface winds are less than 8-11 mph (13-18 km/h). In other words, the conditions causing 10+ days of delays and leading NASA to leave a skeleton crew at the space station’s US segment amounts to a firm breeze. There are likely many reasons (most hopefully good) for that highly conservative limit but ultimately, it means that NASA’s Crew Dragon missions will almost always be at risk of weather delays both going up and coming down.

Advertisement
-->
Crew-2 astronauts Shane Kimbrough, Megan McArthur, Akihiko Hoshide, and Thomas Pesquet check out their Dragon ahead of one last ride home. (Thomas Pesquet)

As if to emphasize that fact, winds in the Gulf of Mexico, on the opposite side of Florida, also caused NASA to delay SpaceX’s Crew-2 departure and splashdown from November 6th/7th to November 8th, raising the risk of more Crew-3 delays or another complex schedule conflict if conditions force another change. A minor issue with Dragon’s toilet discovered during Inspiration4 and fixed on Crew-3’s ride to space will preclude its use during Crew-2’s 11-hour trip home, but that change should be barely noticeable to professional astronauts that are required to wear diapers as a precaution regardless. Otherwise, throughout the delays, Falcon 9 B1067, Crew-3 Dragon C210, and Crew-2 Dragon C206 have all thankfully remained healthy and ready to go.

Crew-2 is scheduled to undock from the ISS around 2pm EST (17:00 UTC) on November 8th and could splash down as early as 10:33 pm (03:33 UTC) – less than nine hours later.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Elon Musk and Tesla AI Director share insights after empty driver seat Robotaxi rides

The executives’ unoccupied tests hint at the rapid progress of Tesla’s unsupervised Robotaxi efforts.

Published

on

Ashok Elluswamy

Tesla CEO Elon Musk and AI Director Ashok Elluswamy celebrated Christmas Eve by sharing personal experiences with Robotaxi vehicles that had no safety monitor or occupant in the driver’s seat. Musk described the system’s “perfect driving” around Austin, while Elluswamy posted video from the back seat, calling it “an amazing experience.”

The executives’ unoccupied tests hint at the rapid progress of Tesla’s unsupervised Robotaxi efforts.

Elon and Ashok’s firsthand Robotaxi insights

Prior to Musk and the Tesla AI Director’s posts, sightings of unmanned Teslas navigating public roads were widely shared on social media. One such vehicle was spotted in Austin, Texas, which Elon Musk acknowleged by stating that “Testing is underway with no occupants in the car.” 

Based on his Christmas Eve post, Musk seemed to have tested an unmanned Tesla himself. “A Tesla with no safety monitor in the car and me sitting in the passenger seat took me all around Austin on Sunday with perfect driving,” Musk wrote in his post.

Elluswamy responded with a 2-minute video showing himself in the rear of an unmanned Tesla. The video featured the vehicle’s empty front seats, as well as its smooth handling through real-world traffic. He captioned his video with the words, “It’s an amazing experience!”

Advertisement
-->

Towards Unsupervised operations

During an xAI Hackathon earlier this month, Elon Musk mentioned that Tesla owed be removing Safety Monitors from its Robotaxis in Austin in just three weeks. “Unsupervised is pretty much solved at this point. So there will be Tesla Robotaxis operating in Austin with no one in them. Not even anyone in the passenger seat in about three weeks,” he said. Musk echoed similar estimates at the 2025 Annual Shareholder Meeting and the Q3 2025 earnings call.

Considering the insights that were posted Musk and Elluswamy, it does appear that Tesla is working hard towards operating its Robotaxis with no safety monitors. This is quite impressive considering that the service was launched just earlier this year.

Continue Reading

Elon Musk

Starlink passes 9 million active customers just weeks after hitting 8 million

The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.

Published

on

Credit: Starlink/X

SpaceX’s Starlink satellite internet service has continued its rapid global expansion, surpassing 9 million active customers just weeks after crossing the 8 million mark. 

The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.

9 million customers

In a post on X, SpaceX stated that Starlink now serves over 9 million active users across 155 countries, territories, and markets. The company reached 8 million customers in early November, meaning it added roughly 1 million subscribers in under seven weeks, or about 21,275 new users on average per day. 

“Starlink is connecting more than 9M active customers with high-speed internet across 155 countries, territories, and many other markets,” Starlink wrote in a post on its official X account. SpaceX President Gwynne Shotwell also celebrated the milestone on X. “A huge thank you to all of our customers and congrats to the Starlink team for such an incredible product,” she wrote. 

That growth rate reflects both rising demand for broadband in underserved regions and Starlink’s expanding satellite constellation, which now includes more than 9,000 low-Earth-orbit satellites designed to deliver high-speed, low-latency internet worldwide.

Advertisement
-->

Starlink’s momentum

Starlink’s momentum has been building up. SpaceX reported 4.6 million Starlink customers in December 2024, followed by 7 million by August 2025, and 8 million customers in November. Independent data also suggests Starlink usage is rising sharply, with Cloudflare reporting that global web traffic from Starlink users more than doubled in 2025, as noted in an Insider report.

Starlink’s momentum is increasingly tied to SpaceX’s broader financial outlook. Elon Musk has said the satellite network is “by far” the company’s largest revenue driver, and reports suggest SpaceX may be positioning itself for an initial public offering as soon as next year, with valuations estimated as high as $1.5 trillion. Musk has also suggested in the past that Starlink could have its own IPO in the future. 

Continue Reading

News

NVIDIA Director of Robotics: Tesla FSD v14 is the first AI to pass the “Physical Turing Test”

After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine.

Published

on

Credit: Grok Imagine

NVIDIA Director of Robotics Jim Fan has praised Tesla’s Full Self-Driving (Supervised) v14 as the first AI to pass what he described as a “Physical Turing Test.”

After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine. And just like smartphones today, removing it now would “actively hurt.”

Jim Fan’s hands-on FSD v14 impressions

Fan, a leading researcher in embodied AI who is currently solving Physical AI at NVIDIA and spearheading the company’s Project GR00T initiative, noted that he actually was late to the Tesla game. He was, however, one of the first to try out FSD v14

“I was very late to own a Tesla but among the earliest to try out FSD v14. It’s perhaps the first time I experience an AI that passes the Physical Turing Test: after a long day at work, you press a button, lay back, and couldn’t tell if a neural net or a human drove you home,” Fan wrote in a post on X. 

Fan added: “Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies.”

Advertisement
-->

The Physical Turing Test

The original Turing Test was conceived by Alan Turing in 1950, and it was aimed at determining if a machine could exhibit behavior that is equivalent to or indistinguishable from a human. By focusing on text-based conversations, the original Turing Test set a high bar for natural language processing and machine learning. 

This test has been passed by today’s large language models. However, the capability to converse in a humanlike manner is a completely different challenge from performing real-world problem-solving or physical interactions. Thus, Fan introduced the Physical Turing Test, which challenges AI systems to demonstrate intelligence through physical actions.

Based on Fan’s comments, Tesla has demonstrated these intelligent physical actions with FSD v14. Elon Musk agreed with the NVIDIA executive, stating in a post on X that with FSD v14, “you can sense the sentience maturing.” Musk also praised Tesla AI, calling it the best “real-world AI” today.

Continue Reading