News
SpaceX’s Crew Dragon astronaut launch debut a step closer after SuperDraco milestone
Photos published by SpaceX reveal that the company has begun to outfit its first astronaut-capable Crew Dragon spacecraft with its eight SuperDraco abort engines, a major milestone along the path to launch.
On October 29th, SpaceX tweeted photos of SuperDraco installation with a caption that confirmed the engines were being installed on Crew Dragon capsule C206, currently assigned to the company’s ‘Demo-2’ astronaut launch debut. These latest photos come just five days after the company published a video of one of many SuperDraco static fire tests, perhaps an indicator that the engines pictured were performing acceptance tests just days prior.
SpaceX is exceptionally thorough when it comes to testing flight hardware before launch: for every new Falcon 9 rocket built, every single Merlin 1D and Vacuum engine is built in California, shipped to Texas for individual static fires, shipped back to CA to be installed on their respective rockets, and then shipped back to TX for an integrated static fire. They’re then shipped to their respective launch sites, where launch technicians perform yet another pre-launch static fire at the launch pad.
Although it’s not known for sure, SpaceX almost certainly takes a similar approach for its Dragon 1 and Dragon 2 spacecraft, both of which feature Draco maneuvering thrusters, while the latter also requires more powerful SuperDraco engines for its launch abort system. More likely than not, all of those (Super)Dracos are tested in McGregor after being assembled in Hawthorne and then shipped back to Hawthorne for installation on Dragon. Due to their reliance on toxic propellant and oxidizer, however, it’s far more challenging to test-fire integrated Crew or Cargo Dragons, although those tests are done once and a while for especially critical milestones.

In fact, capsule C205 recently arrived in Cape Canaveral alongside its flight-proven Falcon 9 rocket to prepare for Crew Dragon’s critical In-Flight Abort (IFA) test, in which the spacecraft will attempt to escape from a supersonic Falcon 9. Prior to launch, SpaceX plans to static fire Crew Dragon C205’s Draco and SuperDraco thrusters, essentially a repeat of the fated April 20th test that destroyed Crew Dragon capsule C201. If that test goes as planned, the spacecraft will be inspected and finally mated atop Falcon 9, while success will also likely mean that the hardware now being installed on Crew Dragon C206 is equally ready for launch.
In the unlikely event that more issues arise, SpaceX will likely have to uninstall C206’s engines, propellant tanks, and plumbing. If everything works as intended, however, C206’s preemptive hardware installation should mean that the spacecraft will be ready to support SpaceX’s astronaut launch debut much sooner.
At present, Crew Dragon’s IFA static fire is expected no earlier than November 6th, while the abort test itself is now scheduled to launch no earlier than December 2019. Demo-2, Crew Dragon’s NASA astronaut launch debut, is scheduled to launch no earlier than Q1 2020, while SpaceX CEO Elon Musk says that the spacecraft and its Falcon 9 rocket should arrive at Pad 39A and be ready for launch as early as November 2019.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
News
Tesla FSD fleet is nearing 7 billion total miles, including 2.5 billion city miles
As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles.
Tesla’s Full Self-Driving (Supervised) fleet is closing in on almost 7 billion total miles driven, as per data posted by the company on its official FSD webpage.
These figures hint at the massive scale of data fueling Tesla’s rapid FSD improvements, which have been quite notable as of late.
FSD mileage milestones
As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles. Tesla owner and avid FSD tester Whole Mars Catalog also shared a screenshot indicating that from the nearly 7 billion miles traveled by the FSD fleet, more than 2.5 billion miles were driven inside cities.
City miles are particularly valuable for complex urban scenarios like unprotected turns, pedestrian interactions, and traffic lights. This is also the difference-maker for FSD, as only complex solutions, such as Waymo’s self-driving taxis, operate similarly on inner-city streets. And even then, incidents such as the San Francisco blackouts have proven challenging for sensor-rich vehicles like Waymos.
Tesla’s data edge
Tesla has a number of advantages in the autonomous vehicle sector, one of which is the size of its fleet and the number of vehicles training FSD on real-world roads. Tesla’s nearly 7 billion FSD miles then allow the company to roll out updates that make its vehicles behave like they are being driven by experienced drivers, even if they are operating on their own.
So notable are Tesla’s improvements to FSD that NVIDIA Director of Robotics Jim Fan, after experiencing FSD v14, noted that the system is the first AI that passes what he described as a “Physical Turing Test.”
“Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies,” Fan wrote in a post on X.
News
Tesla starts showing how FSD will change lives in Europe
Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.
Tesla has launched Europe’s first public shuttle service using Full Self-Driving (Supervised) in the rural Eifelkreis Bitburg-Prüm region of Germany, demonstrating how the technology can restore independence and mobility for people who struggle with limited transport options.
Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.
Officials see real impact on rural residents
Arzfeld Mayor Johannes Kuhl and District Administrator Andreas Kruppert personally tested the Tesla shuttle service. This allowed them to see just how well FSD navigated winding lanes and rural roads confidently. Kruppert said, “Autonomous driving sounds like science fiction to many, but we simply see here that it works totally well in rural regions too.” Kuhl, for his part, also noted that FSD “feels like a very experienced driver.”
The pilot complements the area’s “Citizen Bus” program, which provides on-demand rides for elderly residents who can no longer drive themselves. Tesla Europe shared a video of a demonstration of the service, highlighting how FSD gives people their freedom back, even in places where public transport is not as prevalent.
What the Ministry for Economic Affairs and Transport says
Rhineland-Palatinate’s Minister Daniela Schmitt supported the project, praising the collaboration that made this “first of its kind in Europe” possible. As per the ministry, the rural rollout for the service shows FSD’s potential beyond major cities, and it delivers tangible benefits like grocery runs, doctor visits, and social connections for isolated residents.
“Reliable and flexible mobility is especially vital in rural areas. With the launch of a shuttle service using self-driving vehicles (FSD supervised) by Tesla in the Eifelkreis Bitburg-Prüm, an innovative pilot project is now getting underway that complements local community bus services. It is the first project of its kind in Europe.
“The result is a real gain for rural mobility: greater accessibility, more flexibility and tangible benefits for everyday life. A strong signal for innovation, cooperation and future-oriented mobility beyond urban centers,” the ministry wrote in a LinkedIn post.
News
Tesla China quietly posts Robotaxi-related job listing
Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.
Tesla has posted a new job listing in Shanghai explicitly tied to its Robotaxi program, fueling speculation that the company is preparing to launch its dedicated autonomous ride-hailing service in China.
As noted in the listing, Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.
Robotaxi-specific role
The listing, which was shared on social media platform X by industry watcher @tslaming, suggested that Tesla China is looking to fill the role urgently. The job listing itself specifically mentions that the person hired for the role will be working on the Low Voltage Hardware team, which would design the circuit boards that would serve as the nervous system of the Robotaxi.
Key tasks for the role, as indicated in the job listing, include collaboration with PCB layout, firmware, mechanical, program management, and validation teams, among other responsibilities. The role is based in Shanghai.
China Robotaxi launch
China represents a massive potential market for robotaxis, with its dense urban centers and supportive policies in select cities. Tesla has limited permission to roll out FSD in the country, though despite this, its vehicles have been hailed as among the best in the market when it comes to autonomous features. So far, at least, it appears that China supports Tesla’s FSD and Robotaxi rollout.
This was hinted at in November, when Tesla brought the Cybercab to the 8th China International Import Expo (CIIE) in Shanghai, marking the first time that the autonomous two-seater was brought to the Asia-Pacific region. The vehicle, despite not having a release date in China, received a significant amount of interest among the event’s attendees.