News
SpaceX’s 2018 Crew Dragon launch debut imminent as spacecraft hardware comes together
SpaceX’s first spaceworthy Crew Dragon spacecraft officially has a confident launch target in hand as a flood of activity has begun to complete, ship, test, and deliver multiple critical components ranging from the Dragon capsule itself to the Falcon 9 Block 5 first and second stages for that capsule’s November or December launch debut.
As of today, SpaceX has between three and four months to finish up a significant – but by no means impossible – amount of work, ranging from actual hardware completion, integration, and preflight checkouts and testing to a veritable flood of paperwork required by NASA before any Commercial Crew launch can proceed.
Watch live as @NASA announces the astronauts assigned to fly aboard Crew Dragon and launch from American soil for the first time since the final Space Shuttle mission in 2011 → https://t.co/rdhLIxFGwa pic.twitter.com/Y640lpu13G
— SpaceX (@SpaceX) August 3, 2018
Paper beats rock(et)
In fact, given comments from SpaceX’s President and COO Gwynne Shotwell and CEO Elon Musk, the executives appeared to be very confident that the hardware for the first uncrewed demo mission (DM-1) and second crewed test flight (DM-2) would be ready for launch. These comments most likely group software under that hardware umbrella, meaning that Shotwell and Musk seem to be very subtly commenting on the immense bureaucratic workload required from SpaceX before NASA will permit them to launch.
Decades of experience as a military-industrial complex stalwart has readily prepared Boeing to deal with those vast ‘certification’ workloads, but that certainly doesn’t mean that NASA couldn’t find a more pragmatic and less oppressive balance between carelessness and a downright obsessive compulsion to document every molecule of their commercial providers’ hardware, software, and wetware (employees, management, organizational structure).
- The first spaceworthy Crew Dragon capsule is already in Florida, preparing for its November 2018 launch debut. The same capsule will be refurbished and reflown as few as three months after recovery. (SpaceX)
- Crew Dragon approaches the International Space Station in this render. (SpaceX)
- Crew Dragon separates from its trunk segment. (SpaceX)
Falcon 9 preps for Crew Dragon
Despite the often-onerous bureaucratic demands of NASA’s Commercial Crew Program office, SpaceX is moving rapidly ahead with a range of hardware, all critical for the Crew Dragon’s November/December launch debut. With the capsule itself already in Florida and the DM-1 Dragon’s trunk nearing shipment from Hawthorne to Cape Canaveral (currently NET September), the next and perhaps most important piece is Falcon 9 itself.
Confirmed earlier this year in a quarterly NASA Commercial Crew update, SpaceX assigned Falcon 9 Booster 1051 to Crew Dragon’s debut launch. That rocket booster and its complementary upper stage are already at SpaceX’s McGregor, TX rocket testing facility undergoing a number of acceptance tests and checkouts as of today, confirming a number of critical facts. Most importantly, the presence of integrated the B1051 booster in Texas appears to imply that SpaceX has successfully fixed slight design flaws in their Merlin 1D engines and composite-overwrapped pressure vessels (COPVs), even if the paperwork to officially ‘certify’ them for flight has not been completed.
- Fresh Block 5 Merlin 1D engines are built and assembled in Hawthorne, CA before heading to Texas for testing. (SpaceX)
- A SpaceX technician documents the condition of Falcon 9 B1048’s Block 5 Merlin engines, 08/01/18. (Pauline Acalin)
- Falcon 9 shows off some of its COPVs in a tour of SpaceX’s Hawthorne factory. (SpaceX)
This meshes nicely with details provided in a recent NASA Commercial Crew news post, which stated that “Falcon 9’s first and second stages for the Demo-1 [Crew Dragon] mission are targeted to ship … [to] McGregor, Texas for additional testing in August.” Ship they did and the booster may well have beaten that “August” timeframe according to photos of the facility from mid-July. When exactly that testing will wrap up in Texas is unclear but it would be reasonable to expect the rocket booster and upper stage to ship to SpaceX’s Launch Complex 39A (LC-39A) in Cape Canaveral within 4-6 weeks, giving the company a solid month and a half to integrate the rocket, static fire it at the pad, complete assembly of Crew Dragon, and attach the spacecraft to its Falcon 9 rocket ahead of launch.
For prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket recovery fleet (including fairing catcher Mr Steven) check out our brand new LaunchPad and LandingZone newsletters!
News
Tesla Giga Berlin plant manager faces defamation probe after IG Metall union complaint
Prosecutors in Frankfurt (Oder) confirmed they have opened a defamation probe into Gigafactory Berlin plant manager André Thierig.
Tesla’s Giga Berlin plant manager is now under investigation after a complaint from trade union IG Metall, escalating tensions ahead of next month’s works council elections.
Prosecutors in Frankfurt (Oder) confirmed they have opened a defamation probe into Gigafactory Berlin plant manager André Thierig, as per a report from rbb24.
A spokesperson for the Frankfurt (Oder) public prosecutor’s office confirmed to the German Press Agency that an investigation for defamation has been initiated following a criminal complaint filed by IG Metall against Thierig.
The dispute stems from Tesla’s allegation that an IG Metall representative secretly recorded a works council meeting using a laptop. In a post on X, Thierig described the incident as “truly beyond words,” stating that police were called and a criminal complaint was filed.
“What has happened today at Giga Berlin is truly beyond words! An external union representative from IG Metall attended a works council meeting. For unknown reasons, he recorded the internal meeting and was caught in action! We obviously called police and filed a criminal complaint!” Thierig wrote in a post on X.
Police later confirmed that officers did seize a computer belonging to an IG Metall member at Giga Berlin. Prosecutors are separately investigating the union representative on suspicion of breach of confidentiality and violation of Germany’s Works Constitution Act.
IG Metall has denied Tesla’s allegations. The union claimed that its member offered to unlock the laptop for review in order to accelerate the investigation and counter what it called false accusations. The union has also sought a labor court injunction to “prohibit Thierig from further disseminating false claims.”
The clash comes as Tesla employees prepare to vote in works council elections scheduled for March 2–4, 2026. Approximately 11,000 Giga Berlin workers are eligible to participate in the elections.
News
Tesla wins FCC approval for wireless Cybercab charging system
The decision grants Tesla a waiver that allows the Cybercab’s wireless charging system to be installed on fixed outdoor equipment.
Tesla has received approval from the Federal Communications Commission (FCC) to use Ultra-Wideband (UWB) radio technology in its wireless EV charging system.
The decision grants Tesla a waiver that allows the Cybercab’s wireless charging system to be installed on fixed outdoor equipment. This effectively clears a regulatory hurdle for the company’s planned wireless charging pad for the autonomous two-seater.
Tesla’s wireless charging system is described as follows in the document: “The Tesla positioning system is an impulse UWB radio system that enables peer-to-peer communications between a UWB transceiver installed on an electric vehicle (EV) and a second UWB transceiver installed on a ground-level pad, which could be located outdoors, to achieve optimal positioning for the EV to charge wirelessly.”
The company explained that Bluetooth is first used to locate the charging pad. “Prior to the UWB operation, the vehicular system uses Bluetooth technology for the vehicle to discover the location of the ground pad and engage in data exchange activities (which is not subject to the waiver).”
Once the vehicle approaches the pad, the UWB system briefly activates. “When the vehicle approaches the ground pad, the UWB transceivers will operate to track the position of the vehicle to determine when the optimal position has been achieved over the pad before enabling wireless power charging.”
Tesla also emphasized that “the UWB signals occur only briefly when the vehicle approaches the ground pad; and mostly at ground level between the vehicle and the pad,” and that the signals are “significantly attenuated by the body of the vehicle positioned over the pad.”
As noted by Tesla watcher Sawyer Merritt, the FCC ultimately granted Tesla’s proposal since the Cybercab’s wireless charging system’s signal is very low power, it only turns on briefly while parking, it works only at very short range, and it won’t interfere with other systems.
While the approval clears the way for Tesla’s wireless charging plans, the Cybercab does not appear to depend solely on the new system.
Cybercab prototypes have frequently been spotted charging at standard Tesla Superchargers across the United States. This suggests the vehicle can easily operate within Tesla’s existing charging network even as the wireless system is developed and deployed. With this in mind, it would not be surprising if the first batches of the Cybercab that are deployed and delivered to consumers end up being charged by regular Superchargers.
Elon Musk
Tesla posts updated FSD safety stats as owners surpass 8 billion miles
Tesla shared the milestone as adoption of the system accelerates across several markets.
Tesla has posted updated safety stats for Full Self-Driving Supervised. The results were shared by the electric vehicle maker as FSD Supervised users passed more than 8 billion cumulative miles.
Tesla shared the milestone in a post on its official X account.
“Tesla owners have now driven >8 billion miles on FSD Supervised,” the company wrote in its post on X. Tesla also included a graphic showing FSD Supervised’s miles driven before a collision, which far exceeds that of the United States average.
The growth curve of FSD Supervised’s cumulative miles over the past five years has been notable. As noted in data shared by Tesla watcher Sawyer Merritt, annual FSD (Supervised) miles have increased from roughly 6 million in 2021 to 80 million in 2022, 670 million in 2023, 2.25 billion in 2024, and 4.25 billion in 2025. In just the first 50 days of 2026, Tesla owners logged another 1 billion miles.
At the current pace, the fleet is trending towards hitting about 10 billion FSD Supervised miles this year. The increase has been driven by Tesla’s growing vehicle fleet, periodic free trials, and expanding Robotaxi operations, among others.
Tesla also recently updated the safety data for FSD Supervised on its website, covering North America across all road types over the latest 12-month period.
As per Tesla’s figures, vehicles operating with FSD Supervised engaged recorded one major collision every 5,300,676 miles. In comparison, Teslas driven manually with Active Safety systems recorded one major collision every 2,175,763 miles, while Teslas driven manually without Active Safety recorded one major collision every 855,132 miles. The U.S. average during the same period was one major collision every 660,164 miles.
During the measured period, Tesla reported 830 total major collisions with FSD (Supervised) engaged, compared to 16,131 collisions for Teslas driven manually with Active Safety and 250 collisions for Teslas driven manually without Active Safety. Total miles logged exceeded 4.39 billion miles for FSD (Supervised) during the same timeframe.





