

SpaceX
SpaceX’s Crew Dragon launch moves to March, risking Falcon Heavy delays
The planning date for the launch debut of SpaceX’s Crew Dragon spacecraft has been pushed to no earlier than (NET) March 2019 per sources familiar with the matter, potentially creating a direct schedule conflict with the company’s planned operational debut of Falcon Heavy, also NET March 2019.
At the same time as delays to the Commercial Crew Program continue to increase the odds that NASA will lose assured access to the International Space Station (ISS) in 2020, both of SpaceX’s critical missions are entirely dependent upon the support of its Kennedy Space Center-located Launch Complex 39A (Pad 39A), creating a logistical puzzle that will likely delay Falcon Heavy’s second launch until Crew Dragon is safely in orbit.
The latest updates that #SpaceX has made to LC-39A. They have made a lot of progress with the cladding in the last month. #Falcon9 #Space #Spaceflight #SpaceCoast #Florida #KSC @NASASpaceflight pic.twitter.com/sq76IKDc3K
— Tom (@Cygnusx112) February 2, 2019
As of the first week of December 2018, SpaceX was reportedly planning towards a mid-January 2019 launch debut for Crew Dragon. By the end of December, DM-1 was no earlier than the end of January. By the end of January, DM-1 had slipped to from late-February to NET March 2019. Put in slightly different terms, SpaceX’s Crew Dragon launch debut has been more or less indefinitely postponed for the last two months, with planning dates being pushed back at roughly the same pace as the passage of time (i.e. a day’s delay every day).
Admittedly, DM’s apparently indefinite postponement may well be – and probably is – more of an artifact than a sign of any monolithic cause. While the US government’s longest-ever shutdown (35 days) undoubtedly delayed a major proportion of mission-critical work having to do with extensive NASA reviews of SpaceX and Crew Dragon’s launch readiness (known as Readiness Reviews), much of the 60+ day DM-1 delay can probably be attributed to the complexity of the tasks at hand. Being as it is the first time SpaceX has ever attempted a launch directly related to human spaceflight, as well as the first time NASA has been back at the helm (more or less) of US astronaut launch endeavors in more than 7.5 years, significant delays should come as no surprise regardless of how disappointing they may be.
- Crew Dragon and its crew-rated Falcon 9 went vertical at a launch pad (Pad 39A) for the first time ever on January 4th. (SpaceX)
- The whole shebang. (SpaceX)
- The integrated DM-1 Crew Dragon ‘stack’ rolled out to Pad 39A for the first time in the first few days of 2019. (SpaceX)
- A render of Crew Dragon launching atop Falcon 9. (SpaceX)
The most consequential aspect of DM-1’s two-month (at least) delay will likely be the myriad ways it feeds into delays of SpaceX’s in-flight abort (IFA) test and first crewed launch (DM-2), and thus’s NASA’s ability to once again independently launch US astronauts. Given that SpaceX’s DM-2 is expected to occur around six months after DM-1 and that the final certification of Crew Dragon for official astronaut launches will likely take another 2-3 months, these delays – barring heroics or program modifications – are pushing NASA dangerously close to the edge of losing assured US access to the International Space Station (ISS).
According to a July 2018 report, the Government Accountability Office (GAO) analyzed the Commercial Crew Program and NASA’s human spaceflight program more generally and concluded that NASA would lose assured access to the ISS in November 2019 if Boeing and SpaceX continued to suffer delays and were unable to reach certification status by then. This comes as a result of NASA’s reliance on Russian Soyuz launches for access both to and from the ISS, launch and return service contracts which have no replacements (aside from SpaceX and Boeing). While GAO noted that NASA could likely delay that loss of assured access until January 2020, even that might be pushing it if SpaceX’s DM-1 delay continues much further.
“[While NASA is working on potential solutions, it] has not yet developed a contingency plan to address the potential gaps that [future delays in Boeing and SpaceX schedules] could have on U.S. access to the ISS after 2019.” – GAO, July 2018
Prior to DM-1’s delay from NET January to NET March 2019, SpaceX was targeting an In-Flight Abort test roughly three months after DM-1 (it will reuse DM-1’s Crew Dragon capsule), DM-2 six months after DM-1 (NET June 2019), and NASA certification and the first operational astronaut launch (PCM-1) as few as two months after DM-2 (August 2019). It’s reasonable to assume that delays to DM-1 will impact subsequent Crew Dragon launches roughly 1:1, as DM-2 and its many associated reviews hinge directly on DM-1, while the same relationship also exists between PCM-1 and DM-2. As a result, Crew Dragon’s two-month delay probably means that SpaceX’s NASA certification will occur no earlier than October 2019, giving NASA no more than 90 days of buffer before the US presence on the ISS drops from around 50% (3 astronauts) to 0%.
An excellent view of #SpaceX Launch Complex 39A – better known as Pad 39A – from a February 4th Air National Guard (180th Fighter Wing) flyover. Of note, SpaceX has painted the FSS (tower) black and white and is in the process of installing transparent cladding. pic.twitter.com/DTiGWJk1D7
— Eric Ralph (@13ericralph31) February 5, 2019
Crew Dragon and Falcon Heavy walk into a bar…
The unexpected delays to Crew Dragon’s DM-1 launch debut are likely placing SpaceX in an awkward situation with respect to the operational launch debut of Falcon Heavy, meant to place the terminally delayed Arabsat 6A satellite into orbit no earlier than March 7th, 2019 (at the absolute earliest). DM-1 is also targeting a launch sometime in March, posing a significant problem: both Falcon Heavy and Crew Dragon can only launch from Pad 39A, while the on-site hangar simply doesn’t have the space to support schedule-critical Falcon Heavy prelaunch work (mainly booster integration and a static fire test) and no less critical Crew Dragon launch preparations simultaneously.
- SpaceX’s 39A hangar is massive but it would be a stretch to support Crew Dragon and Falcon Heavy simultaneously. (SpaceX)
- An impressive view of Crew Dragon (DM-1), Falcon 9 B1051, and its upper stage. (SpaceX)
Much like SpaceX’s inaugural Falcon Heavy rocket spent a month and a half fully integrated and more than two weeks in a static-fire limbo (albeit due to one-of-a-kind circumstances) before its launch debut, SpaceX’s second Falcon Heavy rocket – comprised of three new Block 5 boosters and Heavy-specific hardware upgrades – is likely to take a good deal more time than a normal Falcon 9 for prelaunch processing. Almost all of that Heavy-specific testing depends on the rocket being integrated (i.e. all three boosters attached) for preflight fit and systems checks and a wet dress rehearsal (WDR) and/or static fire ignition test.
It’s entirely possible that SpaceX integration technicians are able to complete the process of swapping out Crew Dragon and Falcon 9, modifying the transport/erector (T/E), completing Falcon Heavy booster integration, and installing Falcon Heavy on the T/E quickly enough to allow for simultaneous DM-1 and Arabsat 6A processing. It’s also possible that an extremely elegant but risky alternative strategy could solve the logistical puzzle – as an example, SpaceX could roll Crew Dragon and Falcon 9 out to Pad 39A a week or more before launch to give Falcon Heavy enough space for full integration, whereby Falcon 9’s necessarily successful launch would clear the T/E and allow it to be rolled back into 39A’s hangar for Falcon Heavy installation.
Falcon Heavy at the Cape pic.twitter.com/hizfDVsU7X
— Elon Musk (@elonmusk) December 20, 2017
The most likely (and least risky) end result, however, is an indefinite delay for Falcon Heavy Flight 2, pending the successful launch of Crew Dragon. This is very much an instance where “wait and see” is the only route to solid answers, so wait and see we shall.
Check out Teslarati’s newsletters for prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket launch and recovery processes!
News
Starlink makes a difference in Philippine province ravaged by typhoon
The Severe Tropical Storm battered the province, leaving communications networks in the area in shambles.

The Philippines’ Department of Information and Communications Technology (DICT) is using Starlink to provide connectivity in the municipality of Masbate, which was affected by Severe Tropical Storm Opong (international name Bualoi).
The Severe Tropical Storm battered the province, leaving communications networks in the area in shambles.
Starlink units enhance connectivity
DICT Secretary Henry Aguda visited the province to assess internet and communications infrastructure and deliver 10 additional Starlink satellite units, according to the Philippine News Agency. The is move aimed at strengthening emergency response and restore digital access to the area.
Aguda met with Masbate Governor Richard Kho during his visit and joined telecommunications representatives in inspecting provincial offices, free charging stations, and Wi-Fi connectivity sites for residents.
According to DICT officer-in-charge Rachel Ann Grabador, three Starlink units, 10 routers, and a 2kW solar-powered station have already been deployed in the province following the typhoon. The units have been installed at key facilities such as Masbate Airport’s communications tower and the Masbate Provincial Hospital’s administrative office.
Game-changing technology
Thanks to its global coverage and its capability to provide high-speed internet connectivity even in remote areas, Starlink has become the best communications solution that can be deployed in the aftermath of natural disasters. Its low-cost kits, which are capable of of providing fast internet speeds, are also portable, making them easy to deploy in areas that are damaged by natural disasters.
As noted in a Space.com report, there are currently 8,475 Starlink satellites in orbit, of which 8,460 are working, as of September 25, 2025. Initially, SpaceX had filed documents with International regulators to place about 4,000 Starlink satellites in Low Earth Orbit. Over time, however, the number of planned Starlink satellites has grown, with SpaceX aiming to launch as many as 42,000 Starlink satellites to fully connect the globe.
Elon Musk
SpaceX shares targets and tentative launch date for Starship Flight 11
As with all SpaceX tests, the estimated timeline for Starship Flight 11 remains subject to change based on conditions and readiness.

SpaceX is targeting Monday, October 13, for the eleventh test flight of its Starship launch system. The launch window is expected to open at 6:15 p.m. CT.
Similar to past Starship missions, a live webcast will begin about 30 minutes before launch on SpaceX’s website, X account, and X TV app. As with all SpaceX tests, the estimated timeline for Starship Flight 11 remains subject to change based on conditions and readiness.
Super Heavy booster landing test
The upcoming mission will build on the data gathered from Starship’s tenth test flight, focusing on booster performance and upper-stage capabilities. The Super Heavy booster, previously flown on Flight 8, will launch with 24 flight-proven Raptor engines, according to SpaceX in a blog post on its official website. Its primary objective is to validate a new landing burn engine configuration designed for the next generation of Super Heavy.
Instead of returning to Starbase, the Super Heavy booster will follow a trajectory toward the Gulf of America. During descent, it will ignite 13 engines before transitioning to a five-engine divert phase and then completing the landing burn with three central engines, entering a full hover while still above the ocean surface, followed by shutdown and dropping into the Gulf of America.
Starship upper-stage experiments
The Starship upper stage for Flight 11 will carry out a series of in-space demonstrations, including the deployment of eight Starlink simulators that are comparable in size to next-generation Starlink satellites. These payloads will reenter and burn up during descent. A planned Raptor engine relight in orbit will also provide valuable test data.
To evaluate the upper stage’s resilience during reentry, SpaceX engineers have intentionally removed heat shield tiles from select areas to stress-test Starship’s thermal protection system. The vehicle will attempt new maneuvers during descent, including a banking profile and subsonic guidance algorithms intended to simulate future return-to-launch-site missions. The upper stage will ultimately target a splashdown in the Indian Ocean.
SpaceX has already posted a link to the livestream for Starship Flight 11:
News
Astra CEO shades SpaceX over employee workload and Starbase
Elon Musk once stated that no one ever changed the world working just 40 hours a week.

Elon Musk once stated that no one ever changed the world working just 40 hours a week. This was something that is openly known among his companies. They have the potential to change the world, but they require a lot of hours.
SpaceX’s working environment was recently criticized by Chris Kemp, the chief executive officer of Astra. During some remarks at the Berkeley Space Symposium 2025 earlier this month, Kemp shared some sharp remarks about the Elon Musk-led private space enterprise.
SpaceX working conditions and Starbase
As noted in a report from Ars Technica, Kemp discussed a variety of topics during his talk. These included Astra’s successes and failures, as well as his thoughts on other players in the spaceflight industry. To be fair to Kemp, he practically shaded every major rival, calling Firefly’s engine “garbage,” dubbing Blue Origin as slow, and stating that Rocket Lab’s Electron rocket is “too small.”
SpaceX also received some colorful words from the Astra CEO. According to Kemp, SpaceX is leading the way in the spaceflight industry and Elon Musk is admirable in the way that he is willing to fail in order to move quickly. He did, however, highlight that Astra offers a significantly better working environment than SpaceX.
“It’s more fun than SpaceX, because we’re not on the border of Mexico where they’ll chop your head off if you accidentally take a left turn. And you don’t have to live in a trailer. And we don’t make you work six and a half days a week, 12 hours a day. It’s appreciated if you do, but not required,” Kemp said.
Elon Musk’s demands
It is known that Elon Musk demands quite a lot from his employees. However, it is also known that Musk-led companies move very fast and, in more ways than one, they have accomplished world-changing feats. Tesla, for example, has practically ushered in the era of the modern electric vehicle, and SpaceX has made space attainable through its reusable rockets. With this in mind, employees at Musk’s companies, and this of course includes SpaceX, are likely proud of their long work hours.
No one could probably go to Mars in this lifetime with a team that really works just 40 hours a week, after all.
-
Elon Musk2 weeks ago
Tesla FSD V14 set for early wide release next week: Elon Musk
-
News1 week ago
Elon Musk gives update on Tesla Optimus progress
-
News2 weeks ago
Tesla has a new first with its Supercharger network
-
News2 weeks ago
Tesla job postings seem to show next surprise market entry
-
News2 weeks ago
Tesla makes a big change to reflect new IRS EV tax credit rules
-
Investor's Corner1 week ago
Tesla gets new Street-high price target with high hopes for autonomy domination
-
Lifestyle1 week ago
500-mile test proves why Tesla Model Y still humiliates rivals in Europe
-
News1 week ago
Tesla Giga Berlin’s water consumption has achieved the unthinkable