Connect with us

News

SpaceX gears up for Crew Dragon’s first recovery with a giant inflatable cushion

Published

on

Paired with observations and comments from sources familiar with the company, all signs seem to indicate that SpaceX is planning to recover their first Crew Dragon spacecraft with a giant inflatable cushion, to be towed a hundred or so miles off the coast of California by one of the company’s Port of LA-stationed recovery vessels.

Despite a minor mishap during some sort of inaugural sea-trial of a custom Crew Dragon mass simulator, SpaceX technicians are pushing ahead with a test campaign intended properly characterize exactly how to best recover a Dragon while side-stepping around the problems caused by seawater immersion.

Why recover your Dragon?

First off, why would SpaceX choose to develop a new method of Dragon recovery – different than the company’s current experience with simply landing the capsules in the ocean – with the expectation that it will debut during the recovery of Crew Dragon after its very first demonstration mission (DM-1)? A huge number of unknowns and major questions remain, but the decision to attempt to avoid seawater immersion during the DM-1 Dragon recovery is very likely no coincidence.

Advertisement
-->

Over the last several years, SpaceX engineers and technicians have learned a huge amount from recovering, refurbishing, and even reusing Cargo Dragons to resupply the International Space Station for NASA. Of all the lessons learned, the most unequivocal has to be a newfound appreciation for just how difficult it is to safely and reliably reuse spacecraft and rocket components after landing and being immersed in seawater. Despite SpaceX’s growing experience with reusing both Falcon 9 and Cargo Dragon, Dragons still typically require a bare minimum of 6-12 months of refurbishment before they are ready for another launch.

For Crew Dragon’s DM-1 debut, it thus makes sense that SpaceX wants to recover the spacecraft in such a way that it is exceptionally easy to rapidly refurbish. Perhaps just several months after that capsule returns to Earth, currently expected no earlier than December 2018, SpaceX’s first crewed Crew Dragon demonstration’s tentative April 2019 launch debut will depend entirely on the completion and review of an In-Flight Abort (IFA) test planned just one month prior, March 2019.

The planned IFA test of Crew Dragon hinges entirely on DM-1 and Dragon refurbishment because the present plan (and launch schedule) absolutely depends on reflying DM-1’s Crew Dragon capsule, potentially recovered from orbit as few as three months prior.

Crew Dragon completed a successful pad-abort test in 2015. (SpaceX)

With a successful 2015 Pad Abort already under Crew Dragon’s belt, SpaceX voluntarily chose to conduct an additional complimentary in-flight abort not explicitly required by NASA, designed to demonstrate that Dragon will be able to safely extract astronauts from a failing rocket at the point of peak aerodynamic pressure (Max-Q). Essentially, a combination of successful aborts both on the launch pad and during Max-Q would theoretically demonstrate beyond any reasonable doubt that Crew Dragon really is capable of safely aborting a launch and protecting its astronauts at any point during launch.

Cargo Dragon has demonstrated that – apparently – no amount of heroics can refurbish the recovered spacecraft in just a small handful of months after seawater immersion, not without major changes to its design. As such, preventing that with some sort of inflatable cushion (or even Mr Steven’s net) would likely save many months of drying, cleaning, and requalification testing of all externally impacted components.

How to recover your Dragon

While the “why” is fairly obvious at this point, the “how” of actually making such a cushioned recovery happen is far less clear. Still, we at least know from several recent comments from SpaceX CEO Elon Musk and statements made in environmental impact analyses that the company has been considering such recoveries for some time.

Advertisement
-->

Despite the fact that Crew Dragon’s original propulsive landing capability was nixed due to the unlikelihood of NASA ever certifying it for crewed landings and the expense required to attempt that certification, there is still clearly some latent interest (and value) in precisely landing Crew Dragon, even if only to speed up capsule and crew recovery after splashdown. A March 2018 preliminary environmental impact analysis of Gulf of Mexico Dragon recoveries – as a backup to bad weather in the Pacific and Atlantic – made the interest in precision exceptionally clear.

“The splashdown zone is a circle with a radius of approximately 5.4 nautical miles. … Dragon has been designed to perform precision landings in order to minimize the size of the splashdown zone and recovery time.”

Admittedly, a circle with a diameter of 10.8 nautical miles (20 km) does not exactly scream “precision” and ~20 km is likely around a thousand times less precise than what’s needed to land on the 30m-diameter inflatable structure present at Berth 240, but it’s probable that the splashdown zone as discussed is a worst-case scenario meant to give SpaceX’s recovery team plenty of wiggle room.

 

Musk also took a few seconds of a Falcon Heavy post-launch press conference to briefly describe Mr Steven, and he just so happened to touch on fairing and Dragon recovery:

Advertisement
-->

“And we’ve got a special boat to catch the fairing. … It’s like a giant catcher’s mitt in boat form. I think we might be able to do the same thing with Dragon. So…if NASA wants us to, we can try to catch Dragon. Literally, it’s meant for the fairing, but it would work for Dragon, too.” – Elon Musk

Mr Steven takes one for the team

Even more experimental than fairing recovery, SpaceX happened to experience a minor incident while attempting to test aspects of its prototype Dragon catcher apparatus in early August. Partially captured by Teslarati photographer Pauline Acalin, SpaceX technicians were lifting a Crew Dragon heatshield mass simulator with a healthy topping of buoys onto Mr Steven. Moments after it was lowered onto the deck, the whole setup disappeared below the vessel’s side rails in a massive boom.

 

According to sources familiar with SpaceX’s recovery fleet, the mishap was much less severe than the deafening noise it produced seemed to indicate from the sidelines. They described the aftermath as “an annoying accident” that was unlikely to take any significant amount of time to repair. More likely than not, Mr Steven’s wooden deck suffered some level of structural degradation after several years of active use, something that SpaceX technicians only discovered after loading (or maybe dropping) a heavy Dragon mass simulator aboard.

Regardless, one could certainly say that the test in question was more or less a success, as it most certainly demonstrated whether Mr Steven’s deck was actually capable of supporting the heavy test article (it was not). A few repairs and structural reinforcements later, the vessel is likely already back in working order, with photos taken on August 19th showing that the focus has returned to the vessel’s arms (two of which must have been removed earlier this week).

Advertisement
-->
Mr Steven sans two arms, August 19th. (Pauline Acalin)

For prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket recovery fleet check out our brand new LaunchPad and LandingZone newsletters!

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Elon Musk proposes Grok 5 vs world’s best League of Legends team match

Musk’s proposal has received positive reception from professional players and Riot Games alike.

Published

on

UK Government, CC BY 2.0 , via Wikimedia Commons

Elon Musk has proposed a high-profile gaming challenge for xAI’s upcoming Grok 5. As per Musk, it would be interesting to see if the large language model could beat the world’ best human League of Legends team with specific constraints.

Musk’s proposal has received positive reception from professional players and Riot Games alike, suggesting that the exciting exhibition match might indeed happen. 

Musk outlines restrictions for Grok

In his post on X, Musk detailed constraints to keep the match competitive, including limiting Grok to human-level reaction times, human-speed clicking, and viewing the game only through a camera feed with standard 20/20 vision. The idea quickly circulated across the esports community, drawing commentary from former pros and AI researchers, as noted in a Dexerto report.

Former League pro Eugene “Pobelter” Park expressed enthusiasm, offering to help Musk’s team and noting the unique comparison to past AI-versus-human breakthroughs, such as OpenAI’s Dota 2 bots. AI researcher Oriol Vinyals, who previously reached Grandmaster rank in StarCraft, suggested testing Grok in RTS gameplay as well. 

Musk welcomed the idea, even responding positively to Vinyals’ comment that it would be nice to see Optimus operate the mouse and keyboard.

Advertisement
-->

Pros debate Grok’s chances, T1 and Riot show interest

Reactions weren’t universally optimistic. Former professional mid-laner Joedat “Voyboy” Esfahani argued that even with Grok’s rapid learning capabilities, League of Legends requires deep synergy, game-state interpretation, and team coordination that may be difficult for AI to master at top competitive levels. Yiliang “Doublelift” Peng was similarly skeptical, publicly stating he doubted Grok could beat T1, or even himself, and jokingly promised to shave his head if Grok managed to win.

T1, however, embraced the proposal, responding with a GIF of Faker and the message “We are ready,” signaling their willingness to participate. Riot Games itself also reacted, with co-founder Marc Merrill replying to Musk with “let’s discuss.” Needless to say, it appears that Riot Games in onboard with the idea.

Though no match has been confirmed, interest from players, teams, and Riot suggests the concept could materialize into a landmark AI-versus-human matchup, potentially becoming one of the most viewed League of Legends events in history. The fact that Grok 5 will be constrained to human limits would definitely add an interesting dimension to the matchup, as it could truly demonstrate how human-like the large language model could be like in real-time scenarios.

Tesla has passed a key milestone, and it was one that CEO Elon Musk initially mentioned more than nine years ago when he published Master Plan, Part Deux. 

As per Tesla China in a post on its official Weibo account, the company’s Autopilot system has accumulated over 10 billion kilometers of real-world driving experience.

Tesla China’s subtle, but huge announcement

In its Weibo post, Tesla China announced that the company’s Autopilot system has accumulated 10 billion kilometers of driving experience. “In this respect, Tesla vehicles equipped with Autopilot technology can be considered to have the world’s most experienced and seasoned driver.” 

Advertisement
-->

Tesla AI’s handle on Weibo also highlighted a key advantage of the company’s self-driving system. “It will never drive under the influence of alcohol, be distracted, or be fatigued,” the team wrote. “We believe that advancements in Autopilot technology will save more lives.”

Tesla China did not clarify exactly what it meant by “Autopilot” in its Weibo post, though the company’s intense focus on FSD over the past years suggests that the term includes miles that were driven by FSD (Beta) and Full Self-Driving (Supervised). Either way, 10 billion cumulative miles of real-world data is something that few, if any, competitors could compete with.

Advertisement

–>

Credit: Tesla China/Weibo

Elon Musk’s 10-billion-km estimate, way back in 2016

When Elon Musk published Master Plan Part Deux, he outlined his vision for the company’s autonomous driving system. At the time, Autopilot was still very new, though Musk was already envisioning how the system could get regulatory approval worldwide. He estimated that worldwide regulatory approval will probably require around 10 billion miles of real-world driving data, which was an impossible-sounding amount at the time. 

“Even once the software is highly refined and far better than the average human driver, there will still be a significant time gap, varying widely by jurisdiction, before true self-driving is approved by regulators. We expect that worldwide regulatory approval will require something on the order of 6 billion miles (10 billion km). Current fleet learning is happening at just over 3 million miles (5 million km) per day,” Musk wrote. 

Advertisement
-->

It’s quite interesting but Tesla is indeed getting regulatory approval for FSD (Supervised) at a steady pace today, at a time when 10 billion miles of data has been achieved. The system has been active in the United States and has since been rolled out to other countries such as Australia, New Zealand, China, and, more recently, South Korea. Expectations are high that Tesla could secure FSD approval in Europe sometime next year as well. 

Continue Reading

News

Elon Musk’s Boring Company reveals Prufrock TBM’s most disruptive feature

As it turns out, the tunneling startup, similar to other Elon Musk-backed ventures, is also dead serious about pursuing reusability.

Published

on

The Boring Company has quietly revealed one of its tunnel boring machines’ (TBMs) most underrated feature. As it turns out, the tunneling startup, similar to other Elon Musk-backed ventures, is also dead serious about pursuing reusability.

Prufrock 5 leaves the factory

The Boring Company is arguably the quietest venture currently backed by Elon Musk, inspiring far fewer headlines than his other, more high-profile companies such as Tesla, SpaceX, and xAI. Still, the Boring Company’s mission is ambitious, as it is a company designed to solve the problem of congestion in cities.

To accomplish this, the Boring Company would need to develop tunnel boring machines that could dig incredibly quickly. To this end, the startup has designed Prufrock, an all-electric TBM that’s designed to eventually be fast enough as an everyday garden snail. Among TBMs, such a speed would be revolutionary. 

The startup has taken a step towards this recently, when The Boring Company posted a photo of Prufrock-5 coming out of its Bastrop, Texas facility. “On a rainy day in Bastrop, Prufrock-5 has left the factory. Will begin tunneling by December 1.  Hoping for a step function increase in speed,” the Boring Company wrote.

Prufrock’s quiet disruption

Interestingly enough, the Boring Company also mentioned a key feature of its Prufrock machines that makes them significantly more sustainable and reusable than conventional TBMs. As per a user on X, standard tunnel boring machines are often left underground at the conclusion of a project because retrieving them is usually more expensive and impractical than abandoning them in the location. 

Advertisement
-->

As per the Boring Company, however, this is not the case for its Prufrock machines, as they are retrieved, upgraded, and deployed again with improvements. “All Prufrocks are reused, usually with upgrades between launches. Prufrock-1 has now dug six tunnels,” the Boring Company wrote in its reply on X.

The Boring Company’s reply is quite exciting as it suggests that the TBMs from the tunneling startup could eventually be as reusable as SpaceX’s boosters. This is on brand for an Elon Musk-backed venture, of course, though the Boring Company’s disruption is a bit more underground. 

Continue Reading

News

Tesla accused of infringing robotics patents in new lawsuit

Published

on

tesla store in New York City
Credit: Tesla

Tesla is being accused of infringing robotics patents by a company called Perrone Robotics, which is based out of Charlottesville, Virginia.

The suit was filed in Alexandria, Virginia, and accuses Tesla of knowingly infringing upon five patents related to robotics systems for self-driving vehicles.

The company said its founder, Paul Perrone, developed general-purpose robotics operating systems for individual robots and automated devices.

Perrone Robotics claims that all Tesla vehicles utilizing the company’s Autopilot suite within the last six years infringe the five patents, according to a report from Reuters.

Tesla’s new Safety Report shows Autopilot is nine times safer than humans

One patent was something the company attempted to sell to Tesla back in 2017. The five patents cover a “General Purpose Operating System for Robotics,” otherwise known as GPROS.

The GPROS suite includes extensions for autonomous vehicle controls, path planning, and sensor fusion. One key patent, U.S. 10,331,136, was explicitly offered to Tesla by Perrone back in 2017, but the company rejected it.

The suit aims to halt any further infringements and seeks unspecified damages.

This is far from the first suit Tesla has been involved in, including one from his year with Perceptive Automata LLC, which accused Tesla of infringing on AI models to interpret pedestrian/cyclist intent via cameras without licensing. Tesla appeared in court in August, but its motion to dismiss was partially denied earlier this month.

Tesla also settled a suit with Arsus LLC, which accused Autopilot’s electronic stability features of infringing on rollover prevention tech. Tesla won via an inter partes review in September.

Most of these cases involve non-practicing entities or startups asserting broad autonomous vehicle patents against Tesla’s rapid iteration.

Tesla typically counters with those inter partes reviews, claiming invalidity. Tesla has successfully defended about 70 percent of the autonomous vehicle lawsuits it has been involved in since 2020, but settlements are common to avoid discovery costs.

The case is Perrone Robotics Inc v Tesla Inc, U.S. District Court, Eastern District of Virginia, No. 25-02156. Tesla has not yet listed an attorney for the case, according to the report.

Continue Reading