

SpaceX
SpaceX’s Crew Dragon spaceship shown off in first high-res orbital portraits
Taken by Russian cosmonaut Oleg Kononenko, the first high-resolution photos of SpaceX’s Crew Dragon spacecraft have begun to trickle in, offering the best views yet of the advanced human-rated spacecraft in its natural habit: Earth orbit.
Filling in for a distinct and uncharacteristic lack of official photos from NASA, the spacecraft’s inaugural spaceflight had thus far only been documented through NASA’s own live coverage of its International Space Station (ISS) rendezvous, limited to a relatively low-quality stream. With Oleg’s extremely high-resolution captures, we can begin to see SpaceX’s Crew Dragon with a level of detail previously only seen (if ever) on the ground.
Stunning photos of Dragon 2 docking from Oleg Kononenko! https://t.co/Lu9zlKFPt9
He was monitoring from the Russian section, near the Soyuz, due to Rocosmos contingency procedures.
Hires set:https://t.co/lFuRSzlvpQ pic.twitter.com/6wrBqVDPOP
— NSF – NASASpaceflight.com (@NASASpaceflight) March 4, 2019
In all fairness to NASA, the ISS is operating with just three crew members, only one of which – Anne McClain – is a NASA astronaut. Particularly the case for an operation as critical as Crew Dragon’s inaugural orbital docking attempt, the task of controlling space vehicle rendezvous typically requires the full attention of one or two onboard astronauts – in this case, NASA’s Anne McClain and Canadian Space Agency (CSA) astronaut David Saint-Jacques. Veteran Russian cosmonaut Oleg Kononenko, however, was required by Roscosmos to remain in the Russian segment of the ISS in the event of a catastrophic anomaly during Crew Dragon’s approach to the station.
Just prior to launch, NASA broke the news that its Russian ISS partners had expressed concerns about the design of Crew Dragon’s approach trajectory, mainly focusing on the fact that a loss of control or communications while moving towards the station would leave no way for the spacecraft to naturally slow down. In other words, a dead spacecraft with a forward velocity would simply continue moving forward until it impacted the ISS, a bit like a semi-truck crash in slow motion (i.e. < 0.5 m/s or 1 mph). Weighing a hefty 12 tons (~26,600 lbs) during the arrival, even an extremely low-speed impact could undoubtedly do some damage to the ISS, although an actual hull breach (and thus a need to evacuate) would be extraordinarily unlikely. Still, Oleg was unable to significantly assist during the rendezvous itself, although the cosmonaut was front and center after Crew Dragon’s successful capture.
Taking advantage of the opportunity to observe, the cosmonaut was able to take a number of photos of Crew Dragon’s arrival, although the location of its docking port makes for a less than optimal perspective. Still, it’s hard to complain about any extremely high-quality photos of Crew Dragon, and Oleg’s are nothing short of spectacular. Highlighting the spacecraft’s nose section and docking port hardware, as well as limited views of its trunk section and body, this is quite possibly the first time SpaceX’s newest vehicle has been publicly shown off at this level of detail.
This privileged view includes a detailed look at Crew Dragon’s Draco maneuvering thrusters (elongated black ovals below SpaceX logo), two shrouds containing half of its SuperDraco abort thrusters (beneath the NASA meatball and flag emblem), the ‘Dragon Claw’ latch connecting the capsule and trunk (a smooth rectangle in the lower right), and even a (likely) duo of LIDAR arrays to the left and right of the docking adapter ring. Other notable appearances include the disposable trunk section’s radiators (a series of white rectangles visible on the left) and empennage, four fins meant to provide aerodynamic stability in the event of an abort. Just out of view is trunk’s sculpture-like solar array, curved to fit along the upper (relative) half of the section and fixed in place to minimize failure modes associated to deployable solar arrays like those used on Cargo Dragon.
- Crew Dragon is backlit by an orbital sunrise over Earth’s limb on its inaugural March 2019 spaceflight. (Anne McClain)
- Crew Dragon’s ISS approach. (Oleg Kononenko)
- A better view of the solar array half of Crew Dragon’s trunk section. (NASA)
- Cloooooser… (Oleg Kononenko)
- (Oleg Kononenko)
After completing its successful space station docking debut on the morning of March 3rd, Crew Dragon is scheduled to depart the ISS and reenter Earth’s atmosphere for a soft landing in the Atlantic Ocean around 9 am PST (14:00 UTC) on March 8th. According to the SpaceX and NASA hosts of the live docking coverage, Crew Dragon’s DM-1 departure from the ISS will also be treated to a hosted webcast, potentially all the way through reentry and recovery aboard the customized SpaceX vessel GO Searcher. According to CEO Elon Musk, there is a slight but present chance of anomalous behavior during reentry due to aerodynamic instability caused by the shrouds covering Crew Dragon’s unique SuperDraco abort system, while NASA continues to have concerns (largely unexplained) about the spacecraft’s redundant parachute system.
Regardless of technical concerns, Crew Dragon’s reentry will be the final critical challenge in the way of completing its first demonstration launch (DM-1), proceeded by a flawless launch and equally flawless docking. If successful, it will explicitly pave the way for the spacecraft’s second demonstration mission (DM-2), in which two NASA astronauts will be transported to the ISS. That major milestone could occur as early as July, although slips are probable.
Check out Teslarati’s newsletters for prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket launch and recovery processes!
News
Starship Flight 10 rescheduled as SpaceX targets Monday launch
SpaceX said it is now targeting Monday evening for Starship’s 10th flight test.

SpaceX stood down from its planned Starship Flight 10 on Sunday evening, citing an issue with ground systems.
The launch attempt was scheduled during a one-hour window that opened at 7:30 p.m. ET, but it was called off just 17 minutes before the window opened. SpaceX said it is now targeting Monday evening for Starship’s 10th flight test.
Flight 10 rescheduled
A lot of excitement was palpable during the lead up to Starship Flight 10’s first launch window. After the failures of Starship Flight 9, many were interested to see if SpaceX would be able to nail its mission objectives this time around. Starship itself seemed ready to fly, with the upper stage being loaded with propellant as scheduled. Later on, SpaceX also noted that Starship’s Super Heavy booster was also being loaded with propellant.
However, 17 before the launch window opened, SpaceX noted that it was “standing down from today’s tenth flight of Starship to allow time to troubleshoot an issue with ground systems.” Elon Musk, in a post on X, further clarified that a “ground side liquid oxygen leak needs to be fixed.” Musk did state that SpaceX will attempt Flight 10 again on Monday, August 25, 2025.
Starship and SpaceX’s development goals
The fully integrated Starship system is the tallest and most powerful rocket ever built, standing over 400 feet when stacked. Composed of the reusable Super Heavy booster and the Starship upper stage, the vehicle is central to SpaceX’s long-term ambitions of lunar and Martian missions. NASA has already selected Starship as the crewed lunar lander for Artemis, with its first astronaut landing mission tentatively set for 2027, as noted in a Space.com report.
So far, Starship has flown nine times from Starbase in Texas, with three launches this year alone. Each flight has offered critical data, though all three 2025 missions encountered notable failures. Flight 7 and Flight 8 ended in explosions less than 10 minutes after launch, while Flight 9 broke apart during reentry. Despite setbacks, SpaceX has continued refining Starship’s hardware and operations with each attempt. Needless to say, a successful Flight 10 would be a significant win for the Starship program.
Elon Musk
SpaceX Starship Flight 10: What to expect
SpaceX implemented hardware and operational changes aimed at improving Starship’s reliability.

SpaceX is preparing to launch the tenth test flight of its Starship vehicle as early as Sunday, August 24, with the launch window opening at 6:30 p.m. CT.
The mission follows investigations into anomalies from earlier flights, including the loss of Starship on its ninth test and a Ship 36 static fire issue. SpaceX has since implemented hardware and operational changes aimed at improving Starship’s reliability.
Booster landing burns and flight experiments
The upcoming Starship Flight 10 will expand Super Heavy’s flight envelope with multiple landing burn trials. Following stage separation, the booster will attempt a controlled flip and boostback burn before heading to an offshore splashdown in the Gulf of America. One of the three center engines typically used for landing will be intentionally disabled, allowing engineers to evaluate whether a backup engine can complete the maneuver, according to a post from SpaceX.
The booster will also transition to a two-engine configuration for the final phase, hovering briefly above the water before shutdown and drop. These experiments are designed to simulate off-nominal scenarios and generate real-world data on performance under varying conditions, while maximizing propellant use during ascent to enable heavier payloads.
Starship upper stage reentry tests
The Starship upper stage will attempt multiple in-space objectives, including deployment of eight Starlink simulators and a planned Raptor engine relight. SpaceX will also continue testing reentry systems with several modifications. A section of thermal protection tiles has been removed to expose vulnerable areas, while new metallic tile designs, including one with active cooling, will be trialed.
Catch fittings have been installed to evaluate their thermal and structural performance, and adjustments to the tile line will address hot spots observed on Flight 6. The reentry profile is expected to push the structural limits of Starship’s rear flaps at maximum entry pressure.
SpaceX says lessons from these tests are critical to refining the next-generation Starship and Super Heavy vehicles. With Starfactory production ramping in Texas and new launch infrastructure under development in Florida, the company is pushing to hit its goal of achieving a fully reusable orbital launch system.
News
FAA clears SpaceX for Starship Flight 10 after probe into Flight 9 mishap
SpaceX will attempt a Gulf splashdown for Flight 10 once more instead of a tower capture.

The Federal Aviation Administration has closed its review of SpaceX’s Starship Flight 9 mishap, clearing the way for the next launch attempt as soon as August 24.
Flight 9 ended with the loss of both the Super Heavy booster and the upper stage, but regulators accepted SpaceX’s findings that a fuel component failure was the root cause. No public safety concerns were reported from the incident.
Starship recovery lessons
SpaceX noted that Flight 9 marked the first reuse of a Super Heavy booster. Unlike prior attempts, the company did not try a tower “chopsticks” recovery, opting instead for an offshore return that ended in a destructive breakup. The upper stage was also lost over the Indian Ocean.
As per the FAA in its statement, “There are no reports of public injury or damage to public property. The FAA oversaw and accepted the findings of the SpaceX-led investigation. The final mishap report cites the probable root cause for the loss of the Starship vehicle as a failure of a fuel component. SpaceX identified corrective actions to prevent a reoccurrence of the event.”
SpaceX also highlighted that Flight 9’s debris did not harm any wildlife. “SpaceX works with an experienced global response provider to retrieve any debris that may wash up in South Texas and/or Mexico as a result of Starship flight test operations. During the survey of the expected debris field from the booster, there was no evidence of any floating or deceased marine life that would signal booster debris impact harmed animals in the vicinity,” the private space company noted.
Expanding test objectives
To mitigate risks, SpaceX plans to adjust return angles for future flights and conduct additional landing burn tests on Flight 10. SpaceX will attempt a Gulf splashdown for Flight 10 once more, instead of a tower capture, according to a report from the Boston Herald.
The upcoming Starship Flight 10, which will be launching from Starbase in Texas, will also mark SpaceX’s attempt to perform its first payload deployment and an in-space Raptor relight. Despite recent setbacks, which include the last three flights ending with the upper stage experiencing a rapid unscheduled disassembly (RUD), Starship remains central to NASA’s Artemis program, with a variant tapped as the human landing system for Artemis III, the first since the Apollo program.
Standing more than 400 feet tall and generating 16 million pounds of thrust, Starship remains the most powerful rocket flown, though it has yet to complete an orbital mission. The FAA has expanded SpaceX’s license to allow up to 25 Starship flights annually from Texas.
-
Elon Musk3 days ago
Elon Musk takes aim at Bill Gates’ Microsoft with new AI venture “Macrohard”
-
Elon Musk8 hours ago
Elon Musk argues lidar and radar make self driving cars more dangerous
-
News2 weeks ago
Elon Musk reaffirms Tesla Semi mass production in 2026
-
News1 week ago
Tesla clarifies LA car carrier fire started in diesel semi, not EV batteries
-
News2 weeks ago
Tesla FSD V14 gets tentative release date
-
Elon Musk2 weeks ago
Tesla warns consumers of huge, time-sensitive change coming soon
-
News2 weeks ago
Tesla plans to use Unreal Engine for driver visualization with crazy upgrade
-
News2 weeks ago
Tesla flexes its most impressive and longest Full Self-Driving demo yet