Connect with us

News

SpaceX teases Crew Dragon capsule and spacesuit details in new video

Published

on

Over the past few weeks, conference presentations given by SpaceX employees like Joy Dunn and Paul Wooster have kicked off with an updated intro reel including unseen slow-motion footage of Falcon Heavy and detailed looks at the company’s spacesuit and Crew Dragon capsule.

Those in the habit of catching SpaceX launches live will be readily familiar with the company’s intro reel – it’s marked the start of live coverage for nearly every webcast in the past three or more years. The current intro reel has remained more or less unchanged since the first successful Falcon 9 booster recovery in December 2015, and this updated intro reel will be a breath of fresh air for what is still admittedly an amazing video. Still, it’s hard to say “no” to slow-motion footage of Falcon Heavy.

Most recently shown at an MIT Media Lab conference during SpaceX Principal Mars Development Engineer Paul Wooster’s presentation, the new reel has – somewhat unsurprisingly – been built around the incredibly successful inaugural Falcon Heavy launch, as well as some more recent footage of the company’s Cargo Dragon docking with the International Space Station. Additional clips show what appears to be details of the finalized Crew Dragon – set to debut in late 2018 – and a closeup of SpaceX’s internally-designed spacesuit. Sticking out as the only truly unusual snippet, the end of the new reel features parts of the animation SpaceX released in 2016 during the debut of their Mars rocket, the Interplanetary Transport System (ITS), which has since been replaced with the similar but different BFR.

While entirely possible that the inclusion of ITS footage in an intro reel clearly updated since 2018 is intentional, it seems more likely that SpaceX has yet to publicize this new video partially because they don’t yet have a similar animation featuring their updated Mars rocket and spaceship. CEO Elon Musk’s recent comments on the encouraging progress being made with the design and construction of the first BFR prototype suggests that such an updated animation could be just around the corner, if not full-up teaser photos of the construction progress. Set to begin suborbital hop testing as early as the first half of 2019 and orbital launches by end of 2020, SpaceX’s Mars ambitions may still feel far away, but the tech that could make them real is already undergoing preliminary construction and testing.

Advertisement
-->

Sooner still is SpaceX’s upcoming debut of Crew Dragon, the spacecraft that will eventually both carry astronauts to the ISS and later replace Cargo Dragon. Initially intended to land near the launch pad on legs, akin to Falcon 9, SpaceX has since canceled that work, largely due to numerous delays that would have almost certainly been incurred in the process of NASA certification of such a new and unproven technology. Instead, Musk made it clear that SpaceX would instead put its time, energy, and money into the development of BFR and BFS, sidestepping NASA’s sometimes-smothering and counterproductive paternalism for the time being.

Crew Dragon will instead be recovered after landing in the ocean, a disappointing concession that is at least partially cushioned by SpaceX’s recent successes and growing expertise with the reuse of their similarly sea-recovered Cargo Dragons. While ocean-recovery certainly won’t lend itself to ease of reuse quite as readily as powered landings, SpaceX will likely be able to significantly drop the cost of Crew Dragon launches in the future by efficiently refurbishing each recovered capsule. Less likely but still a possibility, the company could adopt something similar to the fairing-catcher Mr Steven – essentially a giant net aboard a highly-maneuverable boat – to recover Crew Dragon without submerging the spacecraft in saltwater. As of March 2018, at least according to NASA’s Kennedy Space Center director, SpaceX is still on track to conduct its first uncrewed launch of Crew Dragon as early as August 2018, with the first crewed mission following in December 2018 if all goes well.

SpaceX’s spacesuit is a critical component of their crewed spaceflight efforts, and has been designed and built in-house to ensure that astronauts can survive the emergency depressurization of a Crew Dragon capsule, evidenced by Musk’s recent suggestions that senior suit engineers successfully survived stints in a vacuum chamber while wearing it. Thanks to the staggering success of Falcon Heavy and its iconic Starman and Tesla Roadster payload, SpaceX’s spacesuit will undoubtedly be a badge of honor for all future astronauts who fly aboard Crew Dragon.

Starman gives one final farewell to Earth as he departs for deep space aboard Musk’s Tesla Roadster. (SpaceX)

 

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Tesla AI5 chip nears completion, Elon Musk teases 9-month development cadence

The Tesla CEO shared his recent insights in a post on social media platform X.

Published

on

Credit: Tesla

Tesla’s next-generation AI5 chip is nearly complete, and work on its successor is already underway, as per a recent update from Elon Musk. 

The Tesla CEO shared his recent insights in a post on social media platform X.

Musk details AI chip roadmap

In his post, Elon Musk stated that Tesla’s AI5 chip design is “almost done,” while AI6 has already entered early development. Musk added that Tesla plans to continue iterating rapidly, with AI7, AI8, AI9, and future generations targeting a nine-month design cycle. 

He also noted that Tesla’s in-house chips could become the highest-volume AI processors in the world. Musk framed his update as a recruiting message, encouraging engineers to join Tesla’s AI and chip development teams.

Tesla community member Herbert Ong highlighted the strategic importance of the timeline, noting that faster chip cycles enable quicker learning, faster iteration, and a compounding advantage in AI and autonomy that becomes increasingly difficult for competitors to close.

Advertisement
-->

AI5 manufacturing takes shape

Musk’s comments align with earlier reporting on AI5’s production plans. In December, it was reported that Samsung is preparing to manufacture Tesla’s AI5 chip, accelerating hiring for experienced engineers to support U.S. production and address complex foundry challenges.

Samsung is one of two suppliers selected for AI5, alongside TSMC. The companies are expected to produce different versions of the AI5 chip, with TSMC reportedly using a 3nm process and Samsung using a 2nm process.

Musk has previously stated that while different foundries translate chip designs into physical silicon in different ways, the goal is for both versions of the Tesla AI5 chip to operate identically. AI5 will succeed Tesla’s current AI4 hardware, formerly known as Hardware 4, and is expected to support the company’s Full Self-Driving system as well as other AI-driven efforts, including Optimus.

Continue Reading

News

Tesla Model Y and Model 3 named safest vehicles tested by ANCAP in 2025

According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025.

Published

on

Credit: ANCAP

The Tesla Model Y recorded the highest overall safety score of any vehicle tested by ANCAP in 2025. The Tesla Model 3 also delivered strong results, reinforcing the automaker’s safety leadership in Australia and New Zealand.

According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025. ANCAP’s 2025 tests evaluated vehicles across four key pillars: Adult Occupant Protection, Child Occupant Protection, Vulnerable Road User Protection, and Safety Assist technologies.

The Model Y posted consistently strong results in all four categories, distinguishing itself through a system-based safety approach that combines structural crash protection with advanced driver-assistance features such as autonomous emergency braking, lane support, and driver monitoring. 

This marked the second time the Model Y has topped ANCAP’s annual safety rankings. The Model Y’s previous version was also ANCAP’s top performer in 2022.

The Tesla Model 3 also delivered a strong performance in ANCAP’s 2025 tests, contributing to Tesla’s broader safety presence across segments. Similar to the Model Y, the Model 3 also earned impressive scores across the ANCAP’s four pillars. This made the vehicle the top performer in the Medium Car category.  

ANCAP Chief Executive Officer Carla Hoorweg stated that the results highlight a growing industry shift toward integrated safety design, with improvements in technologies such as autonomous emergency braking and lane support translating into meaningful real-world protection.

Advertisement
-->

“ANCAP’s testing continues to reinforce a clear message: the safest vehicles are those designed with safety as a system, not a checklist. The top performers this year delivered consistent results across physical crash protection, crash avoidance and vulnerable road user safety, rather than relying on strength in a single area.

“We are also seeing increasing alignment between ANCAP’s test requirements and the safety technologies that genuinely matter on Australian and New Zealand roads. Improvements in autonomous emergency braking, lane support, and driver monitoring systems are translating into more robust protection,” Hoorweg said.

Continue Reading

News

Tesla Sweden uses Megapack battery to bypass unions’ Supercharger blockade

Just before Christmas, Tesla went live with a new charging station in Arlandastad, outside Stockholm, by powering it with a Tesla Megapack battery.

Published

on

Credit: Tesla Charging/X

Tesla Sweden has successfully launched a new Supercharger station despite an ongoing blockade by Swedish unions, using on-site Megapack batteries instead of traditional grid connections. The workaround has allowed the Supercharger to operate without direct access to Sweden’s electricity network, which has been effectively frozen by labor action.

Tesla has experienced notable challenges connecting its new charging stations to Sweden’s power grid due to industrial action led by Seko, a major Swedish trade union, which has blocked all new electrical connections for new Superchargers. On paper, this made the opening of new Supercharger sites almost impossible.

Despite the blockade, Tesla has continued to bring stations online. In Malmö and Södertälje, new Supercharger locations opened after grid operators E.ON and Telge Nät activated the sites. The operators later stated that the connections had been made in error. 

More recently, however, Tesla adopted a different strategy altogether. Just before Christmas, Tesla went live with a new charging station in Arlandastad, outside Stockholm, by powering it with a Tesla Megapack battery, as noted in a Dagens Arbete (DA) report. 

Because the Supercharger station does not rely on a permanent grid connection, Tesla was able to bypass the blocked application process, as noted by Swedish car journalist and YouTuber Peter Esse. He noted that the Arlandastad Supercharger is likely dependent on nearby companies to recharge the batteries, likely through private arrangements.

Advertisement
-->

Eight new charging stalls have been launched in the Arlandastad site so far, which is a fraction of the originally planned 40 chargers for the location. Still, the fact that Tesla Sweden was able to work around the unions’ efforts once more is impressive, especially since Superchargers are used even by non-Tesla EVs.

Esse noted that Tesla’s Megapack workaround is not as easily replicated in other locations. Arlandastad is unique because neighboring operators already have access to grid power, making it possible for Tesla to source electricity indirectly. Still, Esse noted that the unions’ blockades have not affected sales as much.

“Many want Tesla to lose sales due to the union blockades. But you have to remember that sales are falling from 2024, when Tesla sold a record number of cars in Sweden. That year, the unions also had blockades against Tesla. So for Tesla as a charging operator, it is devastating. But for Tesla as a car company, it does not matter in terms of sales volumes. People charge their cars where there is an opportunity, usually at home,” Esse noted. 

Advertisement
-->
Continue Reading