Connect with us

News

SpaceX highlights Crew Dragon SuperDraco thrusters as explosion investigation nears end

SpaceX published a highlight reel of Crew Dragon's SuperDraco thruster testing on September 12th. (SpaceX)

Published

on

SpaceX has published a highlight reel touting “over 700 tests” of Crew Dragon’s SuperDraco abort thrusters at the same time as the company is about to close a failure investigation into a Dragon capsule’s April explosion, pinned primarily on abort-related hardware.

According to a September 6th meeting of NASA’s Aerospace Safety Advisory Panel (ASAP), SpaceX has nearly completed the ‘fault tree’ of Crew Dragon’s explosion, a term used to describe the process of analyzing telemetry and ruling out all possible failure modes. Once that tree is complete, the investigation can be finalized and SpaceX can implement all hardware and software changes needed to prevent similar failures from reoccurring. For the time being, this means that a 2019 launch of SpaceX’s inaugural crewed Dragon is almost certainly not in the cards, although early 2020 is still looking promising.

On April 20th, SpaceX was extremely quick to acknowledge that an anomaly had occurred during a planned static fire of flight-proven Crew Dragon capsule C201, recovered just one month prior after a flawless orbital launch debut. Soon after, an extremely low-quality video of a livestream of the static fire attempt was leaked, revealing that the capsule suffered a catastrophic explosion just moments before the ignition of its eight SuperDraco thrusters.

Incredibly, one of Crew Dragon C201’s SuperDraco ‘powerpacks’ (a pair of engines) was not only recovered intact after the explosion but static-fired at SpaceX’s McGregor, TX test facilities. A bit less than three months after the explosion, SpaceX and NASA officials hosted a press conference in July 2019 to discuss preliminary results from their joint Crew Dragon failure investigation. Some work remained to rule out other possibilities but NASA and SpaceX were confident enough to conclude that an exotic interaction between SuperDraco propellant and a leaky titanium valve likely triggered the explosion.

According to ASAP, SpaceX and NASA still have work to do before the investigation can be concluded, describing it as “nearly complete”. Additionally, the ASAP meeting continued what feels like an increasingly myopic focus on SpaceX’s carbon overwrapped pressure vessels (COPVs), used to store high-pressure helium on Falcon 9 and Heavy. COPVs have been partial causes of both of Falcon 9’s two operational failures, explaining NASA’s apparent prioritization of its certification.

Unspecified issues with parachutes were also raised for both Commercial Crew spacecraft, continuing a years-long trend of parachutes and COPVs taking up the majority of ASAP’s attention in public meetings. Boeing and SpaceX continue to test their parachute systems, both well into dozens of distinct tests after something like two years of concerted attempts to satisfy NASA requirements.

SpaceX has already demonstrated a successful orbital launch, reentry, parachute deployment, and splashdown during Crew Dragon’s March 2019 Demo-1 launch, as well as 18 successful Cargo Dragon parachute recoveries in the last seven years. Cargo Dragon did suffer one anomalous splashdown in 2018, but its partially redundant set of chutes still permitted a gentle and intact recovery.

Nevertheless, it appears that SpaceX and Boeing will have to continue performing parachute tests for the indefinite future. Boeing’s next milestone – an uncrewed orbital test flight (OTF) comparable to SpaceX’s Demo-1 mission – is expected to launch no earlier than October 28th according to Russian space industry sources. SpaceX’s next Crew Dragon milestone will be the spacecraft’s in-flight abort (IFA) test, scheduled no earlier than November 2019.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla aims to combat common Full Self-Driving problem with new patent

Tesla writes in the patent that its autonomous and semi-autonomous vehicles are heavily reliant on camera systems to navigate and interact with their environment.

Published

on

Credit: @samsheffer | x

Tesla is aiming to combat a common Full Self-Driving problem with a new patent.

One issue with Tesla’s vision-based approach is that sunlight glare can become a troublesome element of everyday travel. Full Self-Driving is certainly an amazing technology, but there are still things Tesla is aiming to figure out with its development.

Unfortunately, it is extremely difficult to get around this issue, and even humans need ways to combat it when they’re driving, as we commonly use sunglasses or sun visors to give us better visibility.

Cameras obviously do not have these ways to fight sunglare, but a new patent Tesla recently had published aims to fight this through a “glare shield.”

Tesla writes in the patent that its autonomous and semi-autonomous vehicles are heavily reliant on camera systems to navigate and interact with their environment.

The ability to see surroundings is crucial for accurate performance, and glare is one element of interference that has yet to be confronted.

Tesla described the patent, which will utilize “a textured surface composed of an array of micro-cones, or cone-shaped formations, which serve to scatter incident light in various directions, thereby reducing glare and improving camera vision.”

The patent was first spotted by Not a Tesla App.

The design of the micro-cones is the first element of the puzzle to fight the excess glare. The patent says they are “optimized in size, angle, and orientation to minimize Total Hemispherical Reflectance (THR) and reflection penalty, enhancing the camera’s ability to accurately interpret visual data.”

Additionally, there is an electromechanical system for dynamic orientation adjustment, which will allow the micro-cones to move based on the angle of external light sources.

This is not the only thing Tesla is mulling to resolve issues with sunlight glare, as it has also worked on two other ways to combat the problem. One thing the company has discussed is a direct photon count.

CEO Elon Musk said during the Q2 Earnings Call:

“We use an approach which is direct photon count. When you see a processed image, so the image that goes from the sort of photon counter — the silicon photon counter — that then goes through a digital signal processor or image signal processor, that’s normally what happens. And then the image that you see looks all washed out, because if you point the camera at the sun, the post-processing of the photon counting washes things out.”

Future Hardware iterations, like Hardware 5 and Hardware 6, could also integrate better solutions for the sunglare issue, such as neutral density filters or heated lenses, aiming to solve glare more effectively.

Continue Reading

Elon Musk

Delaware Supreme Court reinstates Elon Musk’s 2018 Tesla CEO pay package

The unanimous decision criticized the prior total rescission as “improper and inequitable,” arguing that it left Musk uncompensated for six years of transformative leadership at Tesla.

Published

on

Gage Skidmore, CC BY-SA 4.0 , via Wikimedia Commons

The Delaware Supreme Court has overturned a lower court ruling, reinstating Elon Musk’s 2018 compensation package originally valued at $56 billion but now worth approximately $139 billion due to Tesla’s soaring stock price. 

The unanimous decision criticized the prior total rescission as “improper and inequitable,” arguing that it left Musk uncompensated for six years of transformative leadership at Tesla. Musk quickly celebrated the outcome on X, stating that he felt “vindicated.” He also shared his gratitude to TSLA shareholders.

Delaware Supreme Court makes a decision

In a 49-page ruling Friday, the Delaware Supreme Court reversed Chancellor Kathaleen McCormick’s 2024 decision that voided the 2018 package over alleged board conflicts and inadequate shareholder disclosures. The high court acknowledged varying views on liability but agreed rescission was excessive, stating it “leaves Musk uncompensated for his time and efforts over a period of six years.”

The 2018 plan granted Musk options on about 304 million shares upon hitting aggressive milestones, all of which were achieved ahead of time. Shareholders overwhelmingly approved it initially in 2018 and ratified it once again in 2024 after the Delaware lower court struck it down. The case against Musk’s 2018 pay package was filed by plaintiff Richard Tornetta, who held just nine shares when the compensation plan was approved.

A hard-fought victory

As noted in a Reuters report, Tesla’s win avoids a potential $26 billion earnings hit from replacing the award at current prices. Tesla, now Texas-incorporated, had hedged with interim plans, including a November 2025 shareholder-approved package potentially worth $878 billion tied to Robotaxi and Optimus goals and other extremely aggressive operational milestones.

Advertisement
-->

The saga surrounding Elon Musk’s 2018 pay package ultimately damaged Delaware’s corporate appeal, prompting a number of high-profile firms, such as Dropbox, Roblox, Trade Desk, and Coinbase, to follow Tesla’s exodus out of the state. What added more fuel to the issue was the fact that Tornetta’s legal team, following the lower court’s 2024 decision, demanded a fee request of more than $5.1 billion worth of TSLA stock, which was equal to an hourly rate of over $200,000.

Delaware Supreme Court Elon Musk 2018 Pay Package by Simon Alvarez

Continue Reading

News

Tesla Cybercab tests are going on overdrive with production-ready units

Tesla is ramping its real-world tests of the Cybercab, with multiple sightings of the vehicle being reported across social media this week.

Published

on

Credit: @JT59052914/X

Tesla is ramping its real-world tests of the Cybercab, with multiple sightings of the autonomous two-seater being reported across social media this week. Based on videos of the vehicle that have been shared online, it appears that Cybercab tests are underway across multiple states.

Recent Cybercab sightings

Reports of Cybercab tests have ramped this week, with a vehicle that looked like a production-ready prototype being spotted at Apple’s Visitor Center in California. The vehicle in this sighting was interesting as it was equipped with a steering wheel. The vehicle also featured some changes to the design of its brake lights.

The Cybercab was also filmed testing at the Fremont factory’s test track, which also seemed to involve a vehicle that looked production-ready. This also seemed to be the case for a Cybercab that was spotted in Austin, Texas, which happened to be undergoing real-world tests. Overall, these sightings suggest that Cybercab testing is fully underway, and the vehicle is really moving towards production.

Production design all but finalized?

Recently, a near-production-ready Cybercab was showcased at Tesla’s Santana Row showroom in San Jose. The vehicle was equipped with frameless windows, dual windshield wipers, powered butterfly door struts, an extended front splitter, an updated lightbar, new wheel covers, and a license plate bracket. Interior updates include redesigned dash/door panels, refined seats with center cupholders, updated carpet, and what appeared to be improved legroom.

There seems to be a pretty good chance that the Cybercab’s design has been all but finalized, at least considering Elon Musk’s comments at the 2025 Annual Shareholder Meeting. During the event, Musk confirmed that the vehicle will enter production around April 2026, and its production targets will be quite ambitious. 

Advertisement
-->
Continue Reading