Connect with us

News

SpaceX rocket sails into California port after interplanetary launch

Pictured here during its first East Coast recovery, Falcon 9 B1063 has sailed into a California port for the first time. (Richard Angle)

Published

on

The first SpaceX Falcon 9 booster to help launch a payload directly into interplanetary space has safely arrived at a California port.

On November 24th, Falcon 9 B1063 lifted off from SpaceX’s West Coast SLC-4E launch site for the second time in about a year, successfully sending an expendable upper stage and NASA’s Double Asteroid Redirection Test (DART) spacecraft on their way to interplanetary space. Aside from marking the first time SpaceX has sent a paying customer’s functional spacecraft beyond the gravity ‘well’ of the Earth-Moon system, SpaceX did so with a flight-proven Falcon booster – a first for NASA’s Launch Service Program (LSP).

For Falcon 9 B1063, it was also the first time the booster performed a landing and recovery in the Pacific Ocean, touching down on recently-relocated drone ship Of Course I Still Love You (OCISLY) about 650 km (~400 mi) southeast of the central California coast.

Towed behind tug Scorpius, Falcon 9 B1063 sailed into Port of Long Beach (adjacent to Port of Los Angeles) on drone ship OCISLY a brisk two and a half days after touchdown. SpaceX’s oldest and most storied drone ship, OCISLY supported 52 Falcon booster recovery attempts off the East Coast (45 successful) before the company chose to transfer the vessel to its West Coast recovery fleet. In its relatively old age, OCISLY is underpowered and relatively finicky to operate and maintain in comparison to newer ships Just Read The Instructions (JRTI) and A Shortfall of Gravitas (ASOG). That makes it a perfect fit for SpaceX’s California launch facilities, which are also relatively old and only capable of supporting one Falcon launch per month.

Advertisement

In comparison, JRTI and ASOG are designed to support at least one or two Falcon booster landings every two weeks, while SpaceX’s more modern LC-39A and LC-40 Florida pads have both supported two back-to-back Falcon 9 launches in ten days or less. On the other hand, SLC-4E’s record turnaround is 36 days – almost four times slower – and SpaceX’s best-case goal for the recently reactivated pad is to average one West Coast launch per month. Perhaps due to Starlink production shortages and/or issues with the new V1.5 satellite design, it’s looking increasingly unlikely that SpaceX will be able to get close to that pace in 2021.

https://twitter.com/matt_dahle/status/1464736462159552512
Falcon 9 B1063 prepares to roll out for its third launch. In the background, an entire second Falcon 9 rocket is visible. (NASA/Bill Ingalls)

There are still some reasons for optimism, though. Even if SpaceX were to ‘merely’ tie its previous 36-day Vandenberg turnaround record, that would technically preserve the possibility of a launch on December 30th or 31st. More importantly, photos from NASA’s DART launch campaign recently revealed that SpaceX already has an entire second Falcon 9 rocket fully integrated (sans payload) inside its SLC-4E hangar. That rocket – Falcon 9 booster B1051 with a new upper stage already installed – was originally scheduled to launch Starlink 2-3 (polar-orbiting laser-linked satellites) on October 17th.

Several weeks of delays – most likely involving the mission’s Starlink payload – precluded an October launch and ultimately pushed the launch to December once it came within four or five weeks of NASA’s DART mission, which took priority. With any luck, SpaceX has fixed whatever issues grounded the mission in the last six weeks, potentially enabling a West Coast Starlink launch just one month after DART – around the last full week of December.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla exec pleads for federal framework of autonomy to U.S. Senate Committee

Published

on

Credit: Tesla

Tesla executive Lars Moravy appeared today in front of the U.S. Senate Commerce Committee to highlight the importance of modernizing autonomy standards by establishing a federal framework that would reward innovation and keep the country on pace with foreign rivals.

Moravy, who is Tesla’s Vice President of Vehicle Engineering, strongly advocated for Congress to enact a national framework for autonomous vehicle development and deployment, replacing the current patchwork of state-by-state rules.

These rules have slowed progress and kept companies fighting tooth-and-nail with local legislators to operate self-driving projects in controlled areas.

Tesla already has a complete Robotaxi model, and it doesn’t depend on passenger count

Moravy said the new federal framework was essential for the U.S. to “maintain its position in global technological development and grow its advanced manufacturing capabilities.

He also said in a warning to the committee that outdated regulations and approval processes would “inhibit the industry’s ability to innovate,” which could potentially lead to falling behind China.

Being part of the company leading the charge in terms of autonomous vehicle development in the U.S., Moravy highlighted Tesla’s prowess through the development of the Full Self-Driving platform. Tesla vehicles with FSD engaged average 5.1 million miles before a major collision, which outpaces that of the human driver average of roughly 699,000 miles.

Moravy also highlighted the widely cited NHTSA statistic that states that roughly 94 percent of crashes stem from human error, positioning autonomous vehicles as a path to dramatically reduce fatalities and injuries.

Skeptics sometimes point to cybersecurity concerns within self-driving vehicles, which was something that was highlighted during the Senate Commerce Committee hearing, but Moravy said, “No one has ever been able to take over control of our vehicles.”

This level of security is thanks to a core-embedded central layer, which is inaccessible from external connections. Additionally, Tesla utilizes a dual cryptographic signature from two separate individuals, keeping security high.

Moravy also dove into Tesla’s commitment to inclusive mobility by stating, “We are committed with our future products and Robotaxis to provide accessible transportation to everyone.” This has been a major point of optimism for AVs because it could help the disabled, physically incapable, the elderly, and the blind have consistent transportation.

Overall, Moravy’s testimony blended urgency about geopolitical competition, especially China, with concrete safety statistics and a vision of the advantages autonomy could bring for everyone, not only in the U.S., but around the world, as well.

Continue Reading

News

Tesla Model Y lineup expansion signals an uncomfortable reality for consumers

Published

on

Credit: Tesla

Tesla launched a new configuration of the Model Y this week, bringing more complexity to its lineup of the vehicle and adding a new, lower entry point for those who require an All-Wheel-Drive car.

However, the broadening of the Model Y lineup in the United States could signal a somewhat uncomfortable reality for Tesla fans and car buyers, who have been vocal about their desire for a larger, full-size SUV.

Tesla has essentially moved in the opposite direction through its closure of the Model X and its continuing expansion of a vehicle that fits the bill for many, but not all.

Tesla brings closure to Model Y moniker with launch of new trim level

While CEO Elon Musk has said that there is the potential for the Model Y L, a longer wheelbase configuration of the vehicle, to enter the U.S. market late this year, it is not a guarantee.

Instead, Tesla has prioritized the need to develop vehicles and trim levels that cater to the future rollout of the Robotaxi ride-hailing service and a fully autonomous future.

But the company could be missing out on a massive opportunity, as SUVs are a widely popular body style in the U.S., especially for families, as the tighter confines of compact SUVs do not support the needs of a large family.

Although there are other companies out there that manufacture this body style, many are interested in sticking with Tesla because of the excellent self-driving platform, expansive charging infrastructure, and software performance the vehicles offer.

Additionally, the lack of variety from an aesthetic and feature standpoint has caused a bit of monotony throughout the Model Y lineup. Although Premium options are available, those three configurations only differ in terms of range and performance, at least for the most part, and the differences are not substantial.

Minor Expansions of the Model Y Fail to Address Family Needs for Space

Offering similar trim levels with slight differences to cater to each consumer’s needs is important. However, these vehicles keep a constant: cargo space and seating capacity.

Larger families need something that would compete with vehicles like the Chevrolet Tahoe, Ford Expedition, or Cadillac Escalade, and while the Model X was its largest offering, that is going away.

Tesla could fix this issue partially with the rollout of the Model Y L in the U.S., but only if it plans to continue offering various Model Y vehicles and expanding on its offerings with that car specifically. There have been hints toward a Cyber-inspired SUV in the past, but those hints do not seem to be a drastic focus of the company, given its autonomy mission.

Tesla appears to be mulling a Cyber SUV design

Model Y Expansion Doesn’t Boost Performance, Value, or Space

You can throw all the different badges, powertrains, and range ratings on the same vehicle, it does not mean it’s going to sell better. The Model Y was already the best-selling vehicle in the world on several occasions. Adding more configurations seems to be milking it.

The true need of people, especially now that the Model X is going away, is going to be space. What vehicle fits the bill of a growing family, or one that has already outgrown the Model Y?

Not Expanding the Lineup with a New Vehicle Could Be a Missed Opportunity

The U.S. is the world’s largest market for three-row SUVs, yet Tesla’s focus on tweaking the existing Model Y ignores this. This could potentially result in the Osborne Effect, as sales of current models without capturing new customers who need more seating and versatility.

Expansions of the current Model Y offerings risk adding production complexity without addressing core demands, and given that the Model Y L is already being produced in China, it seems like it would be a reasonable decision to build a similar line in Texas.

Listening to consumers means introducing either the Model Y L here, or bringing a new, modern design to the lineup in the form of a full-size SUV.

Continue Reading

Elon Musk

Elon Musk reiterates Tesla Optimus’ most sci-fi potential yet

Musk shared his comments in a series of posts on social media platform X.

Published

on

Credit: Tesla/YouTube

Elon Musk recently reiterated one of the most ambitious forecasts for Tesla’s humanoid robot, Optimus, stating it could become the first real-world example of a Von Neumann machine. He also noted once more that Optimus would be Tesla’s biggest product.

Musk shared his comments in a series of posts on social media platform X.

Optimus as a von Neumann machine

In response to a post on X that pondered on sci-fi timelines becoming real, Musk wrote that “Optimus will be the first Von Neumann machine, capable of building civilization by itself on any viable planet.” In a separate post, Musk wrote that Optimus will be Tesla’s “biggest product ever,” a phrase he has used in the past to describe the humanoid robot’s importance to the electric vehicle maker.

A Von Neumann machine is a class of theoretical self-replicating systems originally proposed in the mid-20th century by the mathematician John von Neumann. In his concept, von Neumann described machines that could travel to other worlds, use local materials to create copies of themselves, and carry out large-scale tasks without outside intervention. 

Advertisement

Elon Musk’s broader plans

Considering Musk’s comments, it appears that Optimus would eventually be capable of performing complex work autonomously in environments beyond Earth. If Optimus could achieve such a feat, it could very well unlock humanity’s capability to explore locations beyond Earth. The idea of space exploration becomes more than feasible.

Elon Musk has discussed space-based AI compute, large-scale robotic production, and the role of SpaceX’s Starship in transporting hardware and materials to other planets. While Musk did not detail how Optimus would fit with SpaceX’s exploration activities, his Von Neumann machine comments suggest he is looking at Tesla’s robotics as part of a potential interplanetary ecosystem. 

Advertisement
Continue Reading