Connect with us
USAF photographer James Rainier's remote camera captured this spectacular view of Falcon Heavy Block 5 side boosters B1052 and B1053 returning to SpaceX Landing Zones 1 and 2. (USAF - James Rainier) USAF photographer James Rainier's remote camera captured this spectacular view of Falcon Heavy Block 5 side boosters B1052 and B1053 returning to SpaceX Landing Zones 1 and 2. (USAF - James Rainier)

News

SpaceX’s Elon Musk talks Starship heatshield, rocket landings on Joe Rogan podcast

Published

on

In a multi-hour February 2021 interview with Elon Musk himself, Joe Rogan inexplicably told the famous engineer and CEO that he had never seen a SpaceX rocket landing.

Of course, the 200+ minute conversation did produce a few minor tidbits of interesting information about SpaceX (and much more about Tesla projects), but Rogan’s statement that he’d never seen a SpaceX rocket landing before stole the limelight by a long shot.

SpaceX landed its first Falcon 9 booster – to an extraordinary amount of fanfare – in December 2015. In the five years since that breakthrough, SpaceX has successfully landed Falcon boosters 73 more times. A full 26 of those landings occurred in just the last 12 months. Falcon Heavy – responsible for spectacular, crowd-favorite performances – completed three dual-booster landings and one triple-booster landing between February 2018 and June 2019.

It’s not unimaginable that almost every single human on Earth with some level of access to the internet or social media is at least vaguely aware of or has watched videos of SpaceX landing rockets. To be clear, it is an unequivocal fact – including past comments on landings from Rogan himself – that Rogan has watched SpaceX land Falcon boosters at least once, if not several times. The only real takeaway, fellow readers, is that heavy, long-term drug use is inadvisable.

Cringeworthy moments aside, the interview did produce a select few minor details that weren’t explicitly known before. Most notably, Musk briefly discussed the challenge of developing a heat shield capable of safely returning orbital Starships back to Earth and revealed the main issue that SpaceX is currently working on.

Starship SN11 has an installation of more than 200 heat shield tiles, by far the most expansive deployment yet. (NASASpaceflight – bocachicagal)

Over the last six or so months, SpaceX has been gradually expanding small installations of heat shield tiles on Starship prototypes, ranging from vehicles that never left the ground to high-altitude Starships SN8 and SN9. Those tile installations have grown from a handful (4-8 on Starhopper in 2019) to literal hundreds on the most recent Starship completed by SpaceX.

During earlier ground testing and more recent hop tests with Starships SN5 and SN6, some of those ceramic composite tiles actually fell off or shattered, perhaps due to vibrations from Raptor engines or mechanical stress caused by Starship shrinking and contracting from thermal expansion. According to Musk, what SpaceX is trying to determine with those coupon-style tests is how to install a heat shield with tiles that are neither too close together or too far apart.

Advertisement
-->

According to Musk, ceramic heat shield tiles placed too close together will ultimately shatter, break, or fall off when subjected to the stresses of Starship operations. Those stresses include the violent vibrations created by rocket propulsion supersonic to hypersonic travel, as well as airframe expansion and contraction that occurs when Starship’s steel hull is cyclically heated and cooled by Raptor burns and cryogenic propellant. In other words, assuming fragile, ceramic tiles are a necessity, they need to be placed far enough apart to avoid all of those possible pitfalls.

On the opposite hand, though, the entire point of Starship’s heat shield is to insulate it from extreme thermal stress during atmospheric reentry. If individual tiles are situated too far apart, superheated gas (plasma) produced during reentry will find its way between those tiles, heating up the structure they’re meant to keep cool. In the case of Starship, its steel hull is more than twice as resilient to reentry heating than comparable vehicles (like the Space Shuttle) with common aluminum frames, but a few millimeters of steel is still not enough to prevent weakening, damage, or outright burn-through in the face of orbital reentry.

In essence, SpaceX has to “get the gaps just right” – not too far apart to protect the airframe from plasma intrusion but not so close together that tiles impact or damage their neighbors as Starship cools and warms.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla’s northernmost Supercharger in North America opens

Published

on

Credit: Tesla

Tesla has opened its northernmost Supercharger in Fairbanks, Alaska, with eight V4 stalls located in one of the most frigid cities in the U.S.

Located just 196 miles from the Arctic Circle, Fairbanks’s average temperature for the week was around -12 degrees Fahrenheit. However, there are plenty of Tesla owners in Alaska who have been waiting for more charging options out in public.

There are only 36 total Supercharger stalls in Alaska, despite being the largest state in the U.S.

Eight Superchargers were added to Fairbanks, which will eventually be a 48-stall station. Tesla announced its activation today:

The base price per kWh is $0.43 at the Fairbanks Supercharger. Thanks to its V4 capabilities, it can charge at speeds up to 325 kW.

Despite being the northernmost Supercharger in North America, it is not even in the Top 5 northernmost Superchargers globally, because Alaska is south of Norway. The northernmost Supercharger is in Honningsvåg, Norway. All of the Top 5 are in the Scandanavian country.

Tesla’s Supercharger expansion in 2025 has been impressive, and although it experienced some early-quarter slowdowns due to V3-to-V4 hardware transitions, it has been the company’s strongest year for deployments.

Through the three quarters of 2025, the company has added 7,753 stations and 73,817 stalls across the world, a 16 percent increase in stations and an 18 percent increase in stalls compared to last year.

Tesla is on track to add over 12,000 stalls for the full year, achieving an average of one new stall every hour, an impressive statistic.

Recently, the company wrapped up construction at its Supercharger Oasis in Lost Hills, California, a 168-stall Supercharger that Tesla Solar Panels completely power. It is the largest Supercharger in the world.

Continue Reading

News

Tesla shocks with latest Robotaxi testing move

Why Tesla has chosen to use a couple of Model S units must have a reason; the company is calculated in its engineering and data collection efforts, so this is definitely more than “we just felt like giving our drivers a change of scenery.”

Published

on

Credit: Sawyer Merritt | X

Tesla Model S vehicles were spotted performing validation testing with LiDAR rigs in California today, a pretty big switch-up compared to what we are used to seeing on the roads.

Tesla utilizes the Model Y crossover for its Robotaxi fleet. It is adequately sized, the most popular vehicle in its lineup, and is suitable for a wide variety of applications. It provides enough luxury for a single rider, but enough room for several passengers, if needed.

However, the testing has seemingly expanded to one of Tesla’s premium flagship offerings, as the Model S was spotted with the validation equipment that is seen entirely with Model Y vehicles. We have written several articles on Robotaxi testing mules being spotted across the United States, but this is a first:

Why Tesla has chosen to use a couple of Model S units must have a reason; the company is calculated in its engineering and data collection efforts, so this is definitely more than “we just felt like giving our drivers a change of scenery.”

It seems to hint that Tesla could add a premium, more luxury offering to its Robotaxi platform eventually. Think about it: Uber has Uber Black, Lyft has Lyft Black. These vehicles and services are associated with a more premium cost as they combine luxury models with more catered transportation options.

Tesla could be testing the waters here, and it could be thinking of adding the Model S to its fleet of ride-hailing vehicles.

Reluctant to remove the Model S from its production plans completely despite its low volume contributions to the overall mission of transitioning the world to sustainable energy, the flagship sedan has always meant something. CEO Elon Musk referred to it, along with its sibling Model X, as continuing on production lines due to “sentimental reasons.”

However, its purpose might have been expanded to justify keeping it around, and why not? It is a cozy, premium offering, and it would be great for those who want a little more luxury and are willing to pay a few extra dollars.

Of course, none of this is even close to confirmed. However, it is reasonable to speculate that the Model S could be a potential addition to the Robotaxi fleet. It’s capable of all the same things the Model Y is, but with more luxuriousness, and it could be the perfect addition to the futuristic fleet.

Continue Reading

News

Rivian unveils self-driving chip and autonomy plans to compete with Tesla

Rivian, a mainstay in the world of electric vehicle startups, said it plans to roll out an Autonomy+ subscription and one-time purchase program, priced at $49.99 per month and $2,500 up front, respectively, for access to its self-driving suite.

Published

on

Credit: Rivian

Rivian unveiled its self-driving chip and autonomy plans to compete with Tesla and others at its AI and Autonomy Day on Thursday in Palo Alto, California.

Rivian, a mainstay in the world of electric vehicle startups, said it plans to roll out an Autonomy+ subscription and one-time purchase program, priced at $49.99 per month and $2,500 up front, respectively, for access to its self-driving suite.

CEO RJ Scaringe said it will learn and become more confident and robust as more miles are driven and it gathers more data. This is what Tesla uses through a neural network, as it uses deep learning to improve with every mile traveled.

He said:

“I couldn’t be more excited for the work our teams are driving in autonomy and AI. Our updated hardware platform, which includes our in-house 1600 sparse TOPS inference chip, will enable us to achieve dramatic progress in self-driving to ultimately deliver on our goal of delivering L4. This represents an inflection point for the ownership experience – ultimately being able to give customers their time back when in the car.”

At first, Rivian plans to offer the service to personally-owned vehicles, and not operate as a ride-hailing service. However, ride-sharing is in the plans for the future, he said:

“While our initial focus will be on personally owned vehicles, which today represent a vast majority of the miles to the United States, this also enables us to pursue opportunities in the rideshare space.”

The Hardware

Rivian is not using a vision-only approach as Tesla does, and instead will rely on 11 cameras, five radar sensors, and a single LiDAR that will face forward.

It is also developing a chip in-house, which will be manufactured by TSMC, a supplier of Tesla’s as well. The chip will be known as RAP1 and will be about 50 times as powerful as the chip that is currently in Rivian vehicles. It will also do more than 800 trillion calculations every second.

RAP1 powers the Autonomy Compute Module 3, known as ACM3, which is Rivian’s third-generation autonomy computer.

ACM3 specs include:

  • 1600 sparse INT8 TOPS (Trillion Operations Per Second).
  • The processing power of 5 billion pixels per second.
  • RAP1 features RivLink, a low-latency interconnect technology allowing chips to be connected to multiply processing power, making it inherently extensible.
  • RAP1 is enabled by an in-house developed AI compiler and platform software

As far as LiDAR, Rivian plans to use it in forthcoming R2 cars to enable SAE Level 4 automated driving, which would allow people to sit in the back and, according to the agency’s ratings, “will not require you to take over driving.”

More Details

Rivian said it will also roll out advancements to the second-generation R1 vehicles in the near term with the addition of UHF, or Universal Hands-Free, which will be available on over 3.5 million miles of roadway in the U.S. and Canada.

Rivian will now join the competitive ranks with Tesla, Waymo, Zoox, and others, who are all in the race for autonomy.

Continue Reading