News
SpaceX CEO Elon Musk lays out Starship’s path to orbit with sights set on 2020 debut
Speaking on September 28th, SpaceX CEO Elon Musk sketched out a fairly detailed picture of Starship’s path to orbit, from the first flight of the first full-scale prototype to the spacecraft’s inaugural orbital launch atop a Super Heavy booster.
Incredibly, Musk was persistent with claims that he has challenged SpaceX’s Starship teams to conduct the next-generation rocket’s first orbital launch within six months, drawing a line in the sand around April 1st, 2020 (?). How, then, does the SpaceX CEO foresee the next year or so playing out?
A whole lotta ‘Ships
As is the company’s signature, Musk confirmed that the Starship development program will continue to be highly distributed, hardware-rich, and focused on an iterative and continuous process of learning by doing. Starhopper is perhaps the best emblem of this methodology, defying almost every conceivable aerospace industry norm to successfully build and repeatedly fly what was essentially a rocket built outside by water tower welders.
Starhopper may have scarcely been meant to fly at all, serving almost entirely as a proof of concept and learning experience, but Musk strongly suggested that future Starship prototypes will replicate its highly iterative, learning-on-the-job approach to development. In short, much like SpaceX has nearly completed Starship Mk1 (and Mk2) from scratch in less than six months, SpaceX’s development strategy involves building a lot of Starship prototypes as quickly as possible.
Specifically, Elon Musk stated – in his opinion – that SpaceX will likely attempt its first orbital Starship-Super Heavy launch immediately after Starship Mk1’s first flight attempt, a suborbital launch to ~20 km (12.5 mi). Assuming that test – far more critical than any of Starhopper’s travails – is successful, the very next Starship flight could be an orbital launch attempt.

First and foremost, Musk was pretty clear that the rough schedule he laid out was a “stream of consciousness”. Indeed, the eccentric CEO contradicted (or updated) himself over the course of answering the same question, stating that “[SpaceX] would fly to orbit with [Starship] Mk3” before saying that that it would actually be “Mk4 or Mk5”. Musk is still undoubtedly set on announcing gobsmackingly ambitious schedules for his projects, but it’s worth noting just how serious he seemed while discussing Starship’s development timeline.
He noted that SpaceX will likely “have [Starship] Mk2 built within a couple of months – or less”, referring to the second prototype currently in the late stages of integration at the company’s similar Cocoa, FL facilities. Additionally, Musk indicated that Starship Mk3 – yet to begin construction in Boca Chica – could be finished as few three months from now (around the start of 2020), with Starship Mk4 – to be built in Florida – could be just one to two months behind (NET Feb/March 2020). Correcting his previous statement, whether intentional or not, Musk also added that SpaceX’s first orbital Starship launch attempt would likely involve either the Mk4 or Mk5 prototype and occur “less than six months from now”.
As a slight consolation to the eyewateringly ambitious timeline he laid out, Musk qualified his “six months to orbit” target by acknowledging that it would only be achievable “provided the rate of design and manufacturing improvement continues to be exponential”. If that remains the case, as he believes it has been over the last six or so months, then SpaceX could be ready for the first orbital Starship launch attempt as few as 6-9 months from now – sometime in the first half of 2020.
A lot will undoubtedly have to go very right for that to remain anywhere within the realm of plausibility. This includes the rapid maturation of Starship’s Raptor engine and vacuum-optimized variant, the successful completion of Starship Mk1’s 20km flight test, the assembly and static fire of the first Super Heavy booster(s), the construction of brand new orbital launch facilities, and the FAA’s approval of all aforementioned flight operations.

Needless to say, the odds are heavily stacked against Musk’s goal of reaching orbit within six months. There is undoubtedly a chance that SpaceX can pull it off, even if success would essentially involve constructing a bridge while driving off a cliff. However, the most important thing to note is that even if Elon Musk is a factor of 1.5, 2, 3, or even 4 times off and Starship reaches orbit for the first time 12 or 18 or 24 months from now, it will still have been an incredibly brisk period of development for a rocket as large, high-performance, and ambitious as Starship/Super Heavy.
It should also be made clear that, while it’s utterly beyond the present capabilities of NASA and other space agencies/companies of the 21st century, Saturn V went from paper to its first orbital launch in just five years. Depending on how one perceives Starship development, it could be said that SpaceX began development – particularly marked by Raptor engine prototype testing – as early as 2016. Suffice it to say that it’s far from impossible that Starship’s first orbital launch will happen next year, even if the challenges SpaceX faces are immense.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
News
Tesla Model 3 named New Zealand’s best passenger car of 2025
Tesla flipped the switch on Full Self-Driving (Supervised) in September, turning every Model 3 and Model Y into New Zealand’s most advanced production car overnight.
The refreshed Tesla Model 3 has won the DRIVEN Car Guide AA Insurance NZ Car of the Year 2025 award in the Passenger Car category, beating all traditional and electric rivals.
Judges praised the all-electric sedan’s driving dynamics, value-packed EV tech, and the game-changing addition of Full Self-Driving (Supervised) that went live in New Zealand this September.
Why the Model 3 clinched the crown
DRIVEN admitted they were late to the “Highland” party because the updated sedan arrived in New Zealand as a 2024 model, just before the new Model Y stole the headlines. Yet two things forced a re-evaluation this year.
First, experiencing the new Model Y reminded testers how many big upgrades originated in the Model 3, such as the smoother ride, quieter cabin, ventilated seats, rear touchscreen, and stalk-less minimalist interior. Second, and far more importantly, Tesla flipped the switch on Full Self-Driving (Supervised) in September, turning every Model 3 and Model Y into New Zealand’s most advanced production car overnight.
FSD changes everything for Kiwi buyers
The publication called the entry-level rear-wheel-drive version “good to drive and represents a lot of EV technology for the money,” but highlighted that FSD elevates it into another league. “Make no mistake, despite the ‘Supervised’ bit in the name that requires you to remain ready to take control, it’s autonomous and very capable in some surprisingly tricky scenarios,” the review stated.
At NZ$11,400, FSD is far from cheap, but Tesla also offers FSD (Supervised) on a $159 monthly subscription, making the tech accessible without the full upfront investment. That’s a game-changer, as it allows users to access the company’s most advanced system without forking over a huge amount of money.
News
Tesla starts rolling out FSD V14.2.1 to AI4 vehicles including Cybertruck
FSD V14.2.1 was released just about a week after the initial FSD V14.2 update was rolled out.
It appears that the Tesla AI team burned the midnight oil, allowing them to release FSD V14.2.1 on Thanksgiving. The update has been reported by Tesla owners with AI4 vehicles, as well as Cybertruck owners.
For the Tesla AI team, at least, it appears that work really does not stop.
FSD V14.2.1
Initial posts about FSD V14.2.1 were shared by Tesla owners on social media platform X. As per the Tesla owners, V14.2.1 appears to be a point update that’s designed to polish the features and capacities that have been available in FSD V14. A look at the release notes for FSD V14.2.1, however, shows that an extra line has been added.
“Camera visibility can lead to increased attention monitoring sensitivity.”
Whether this could lead to more drivers being alerted to pay attention to the roads more remains to be seen. This would likely become evident as soon as the first batch of videos from Tesla owners who received V14.21 start sharing their first drive impressions of the update. Despite the update being released on Thanksgiving, it would not be surprising if first impressions videos of FSD V14.2.1 are shared today, just the same.
Rapid FSD releases
What is rather interesting and impressive is the fact that FSD V14.2.1 was released just about a week after the initial FSD V14.2 update was rolled out. This bodes well for Tesla’s FSD users, especially since CEO Elon Musk has stated in the past that the V14.2 series will be for “widespread use.”
FSD V14 has so far received numerous positive reviews from Tesla owners, with numerous drivers noting that the system now drives better than most human drivers because it is cautious, confident, and considerate at the same time. The only question now, really, is if the V14.2 series does make it to the company’s wide FSD fleet, which is still populated by numerous HW3 vehicles.
News
Waymo rider data hints that Tesla’s Cybercab strategy might be the smartest, after all
These observations all but validate Tesla’s controversial two-seat Cybercab strategy, which has caught a lot of criticism since it was unveiled last year.
Toyota Connected Europe designer Karim Dia Toubajie has highlighted a particular trend that became evident in Waymo’s Q3 2025 occupancy stats. As it turned out, 90% of the trips taken by the driverless taxis carried two or fewer passengers.
These observations all but validate Tesla’s controversial two-seat Cybercab strategy, which has caught a lot of criticism since it was unveiled last year.
Toyota designer observes a trend
Karim Dia Toubajie, Lead Product Designer (Sustainable Mobility) at Toyota Connected Europe, analyzed Waymo’s latest California Public Utilities Commission filings and posted the results on LinkedIn this week.
“90% of robotaxi trips have 2 or less passengers, so why are we using 5-seater vehicles?” Toubajie asked. He continued: “90% of trips have 2 or less people, 75% of trips have 1 or less people.” He accompanied his comments with a graphic showing Waymo’s occupancy rates, which showed 71% of trips having one passenger, 15% of trips having two passengers, 6% of trips having three passengers, 5% of trips having zero passengers, and only 3% of trips having four passengers.
The data excludes operational trips like depot runs or charging, though Toubajie pointed out that most of the time, Waymo’s massive self-driving taxis are really just transporting 1 or 2 people, at times even no passengers at all. “This means that most of the time, the vehicle being used significantly outweighs the needs of the trip,” the Toyota designer wrote in his post.
Cybercab suddenly looks perfectly sized
Toubajie gave a nod to Tesla’s approach. “The Tesla Cybercab announced in 2024, is a 2-seater robotaxi with a 50kWh battery but I still believe this is on the larger side of what’s required for most trips,” he wrote.
With Waymo’s own numbers now proving 90% of demand fits two seats or fewer, the wheel-less, lidar-free Cybercab now looks like the smartest play in the room. The Cybercab is designed to be easy to produce, with CEO Elon Musk commenting that its product line would resemble a consumer electronics factory more than an automotive plant. This means that the Cybercab could saturate the roads quickly once it is deployed.
While the Cybercab will likely take the lion’s share of Tesla’s ride-hailing passengers, the Model 3 sedan and Model Y crossover would be perfect for the remaining 9% of riders who require larger vehicles. This should be easy to implement for Tesla, as the Model Y and Model 3 are both mass-market vehicles.
