Connect with us

News

SpaceX CEO Elon Musk claims Starship will be ready for first orbital launch in July

Published

on

CEO Elon Musk claims that SpaceX could be ready to attempt Starship’s first orbital launch as early as July.

While SpaceX has been making slow and steady progress preparing the Starship upper stage and Super Heavy booster nominally assigned to that launch debut, the odds that even just one of those two stages will be fully qualified for flight before the end of July are quite small. Musk’s claims about what will happen after that rocket is ready are even loftier.

According to Musk, after SpaceX is done preparing a Starship and Super Heavy booster for their inaugural orbital launch attempt sometime “next month,” the company will have a second ship and booster pair “ready to fly in August” and another pair every month after that. If SpaceX rapidly completes the dozens of environmental mitigations assigned to it on June 13th and receives an FAA license or experimental permit for orbital Starship launches, the company does theoretically have permission for five orbital launches out of South Texas in 2022, but the same is also true for all 12 months of 2023.

However, there is very little evidence that SpaceX is on the cusp of being able to complete a new orbital-class Starship and Super Heavy booster every month. While SpaceX is working on future Starships and is almost done assembling a second orbital-class Super Heavy booster, the pace of that work appears to be about the same as it’s been for the last 12+ months. Yes, SpaceX is almost done stacking Booster 8 and has begun stacking Ship 25. Sections of Ship 26, Ship 27, and Booster 9 have also been spotted at Starbase. But SpaceX has been unable to finish stacking Booster 8 over the last few months it’s been focused on Ship 24 and Booster 7.

Ship 24 and Booster 7, meanwhile, are making good progress but are still incomplete. Both recently completed several mostly successful cryogenic and structural proof tests and returned to SpaceX’s assembly bays, where workers have begun installing Raptor engines and applying finishing touches.

Advertisement
-->

After a month of work, it appears that Super Heavy B7 may finally be preparing to return to Starbase’s launch site on Thursday, June 16th. Since it returned to the factory on May 14th, SpaceX has been installing 33 new Raptor 2 engines, applying thermal protection to those engines, buttoning up the booster’s aft end, installing control surfaces known as grid fins, and completing a few other unfinished tasks. If all of that work is complete when it rolls out again, B7 could kick off the next phase of its qualification testing – wet dress rehearsals and static fires – shortly after returning to the orbital launch site.

Roughly 2-3 weeks of Booster 7 Raptor installation progress. (SpaceX)

SpaceX has never attempted a full-scale Super Heavy wet dress rehearsal, in which the largest rocket booster ever built will be fully filled with more than three thousand metric tons of flammable cryogenic propellant and put through a simulated launch countdown. SpaceX has also never come close to conducting a full Super Heavy static fire, though it did fire three outdated Raptors on an outdated booster prototype a single time in July 2021.

Ship 24’s position is slightly more favorable, as it only needs six Raptor 2 engines installed. Thanks to Ship 20, which successfully completed several wet dress rehearsals and several static fires that ignited all six engines, Ship 24 will also be heading into terrain that is slightly less uncharted. Still, the Starship’s heat shield needs several hundred more tiles installed, one of four flap aerocover ‘caps’ is missing, and thermal protection will need to be installed around its Raptors.

Ship 24 and Booster 7, June 2022. (Elon Musk/SpaceX)

Once Booster 7 and Ship 24 are both fully outfitted and installed on their respective test stands, there’s still little reason to believe that either prototype has any chance of completing all the tests needed for flight qualification by the end of July. In fact, for B7 and S24 to be truly ready for flight before the end of July, they’d likely need to wrap up qualification testing well before the end of the month to conduct another series of tests after the pair is fully stacked. If SpaceX does not proceed with at least some degree of caution and a plan to thoroughly test both stages before a launch attempt, it will significantly increase the risk of catastrophic launch pad damage that could easily take half a year or more to fix.

More realistically, it’s reasonable to assume that Ship 24 and Booster 7 will both run into some minor issues during their first wet dress rehearsals and static fire tests, possibly requiring Raptor replacements or even minor repairs. Instead of a few weeks, serious flight qualification could take a few months. It’s also arguably far likelier that one or both stages will need to be entirely replaced by Ship 25 or Booster 8 than it is that both will be ready to launch six weeks from now. Both Booster 4 and Ship 24 suffered some degree of damage during proof tests that are in many ways much easier than the wet dress and static fire tests they’ll soon face.

Still, despite the many reasons for pragmatism and expectation management, SpaceX has never been closer to Starship’s orbital launch debut, and the odds of that debut occurring sometime in 2022 have never been better.

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla is improving Giga Berlin’s free “Giga Train” service for employees

With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.

Published

on

Credit: Jürgen Stegemann/LinkedIn

Tesla will expand its factory shuttle service in Germany beginning January 4, adding direct rail trips from Berlin Ostbahnhof to Giga Berlin-Brandenburg in Grünheide.

With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.

New shuttle route

As noted in a report from rbb24, the updated service, which will start January 4, will run between the Berlin Ostbahnhof East Station and the Erkner Station at the Gigafactory Berlin complex. Tesla stated that the timetable mirrors shift changes for the facility’s employees, and similar to before, the service will be completely free. The train will offer six direct trips per day as well.

“The service includes six daily trips, which also cover our shift times. The trains will run between Berlin Ostbahnhof (with a stop at Ostkreuz) and Erkner station to the Gigafactory,” Tesla Germany stated.

Even with construction continuing at Fangschleuse and Köpenick stations, the company said the route has been optimized to maintain a predictable 35-minute travel time. The update follows earlier phases of Tesla’s “Giga Train” program, which initially connected Erkner to the factory grounds before expanding to Berlin-Lichtenberg.

Advertisement
-->

Tesla pushes for majority rail commuting

Tesla began production at Grünheide in March 2022, and the factory’s workforce has since grown to around 11,500 employees, with an estimated 60% commuting from Berlin. The facility produces the Model Y, Tesla’s best-selling vehicle, for both Germany and other territories.

The company has repeatedly emphasized its goal of having more than half its staff use public transportation rather than cars, positioning the shuttle as a key part of that initiative. In keeping with the factory’s sustainability focus, Tesla continues to allow even non-employees to ride the shuttle free of charge, making it a broader mobility option for the area.

Continue Reading

News

Tesla Model 3 and Model Y dominate China’s real-world efficiency tests

The Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km.

Published

on

Credit: Grok Imagine

Tesla’s Model 3 and Model Y once again led the field in a new real-world energy-consumption test conducted by China’s Autohome, outperforming numerous rival electric vehicles in controlled conditions. 

The results, which placed both Teslas in the top two spots, prompted Xiaomi CEO Lei Jun to acknowledge Tesla’s efficiency advantage while noting that his company’s vehicles will continue refining its own models to close the gap.

Tesla secures top efficiency results

Autohome’s evaluation placed all vehicles under identical conditions, such as a full 375-kg load, cabin temperature fixed at 24°C on automatic climate control, and a steady cruising speed of 120 km/h. In this environment, the Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km, as noted in a Sina News report. 

These figures positioned Tesla’s vehicles firmly at the top of the ranking and highlighted their continued leadership in long-range efficiency. The test also highlighted how drivetrain optimization, software management, and aerodynamic profiles remain key differentiators in high-speed, cold-weather scenarios where many electric cars struggle to maintain low consumption.

Xiaomi’s Lei Jun pledges to continue learning from Tesla

Following the results, Xiaomi CEO Lei Jun noted that the Xiaomi SU7 actually performed well overall but naturally consumed more energy due to its larger C-segment footprint and higher specification. He reiterated that factors such as size and weight contributed to the difference in real-world consumption compared to Tesla. Still, the executive noted that Xiaomi will continue to learn from the veteran EV maker. 

“The Xiaomi SU7’s energy consumption performance is also very good; you can take a closer look. The fact that its test results are weaker than Tesla’s is partly due to objective reasons: the Xiaomi SU7 is a C-segment car, larger and with higher specifications, making it heavier and naturally increasing energy consumption. Of course, we will continue to learn from Tesla and further optimize its energy consumption performance!” Lei Jun wrote in a post on Weibo.

Advertisement
-->

Lei Jun has repeatedly described Tesla as the global benchmark for EV efficiency, previously stating that Xiaomi may require three to five years to match its leadership. He has also been very supportive of FSD, even testing the system in the United States.

Continue Reading

Elon Musk

Elon Musk reveals what will make Optimus’ ridiculous production targets feasible

Musk recent post suggests that Tesla has a plan to attain Optimus’ production goals.

Published

on

Credit: Tesla Optimus/X

Elon Musk subtly teased Tesla’s strategy to achieve Optimus’ insane production volume targets. The CEO has shared his predictions about Optimus’ volume, and they are so ambitious that one would mistake them for science fiction.

Musk’s recent post on X, however, suggests that Tesla has a plan to attain Optimus’ production goals.

The highest volume product

Elon Musk has been pretty clear about the idea of Optimus being Tesla’s highest-volume product. During the Tesla 2025 Annual Shareholder Meeting, Musk stated that the humanoid robot will see “the fastest production ramp of any product of any large complex manufactured product ever,” starting with a one-million-per-year line at the Fremont Factory.

Following this, Musk stated that Giga Texas will receive a 10 million-per-year unit Optimus line. But even at this level, the Optimus ramp is just beginning, as the production of the humanoid robot will only accelerate from there. At some point, the CEO stated that a Mars location could even have a 100 million-unit-per-year production line, resulting in up to a billion Optimus robots being produced per year.

Self-replication is key

During the weekend, Musk posted a short message that hinted at Tesla’s Optimus strategy. “Optimus will be the Von Neumann probe,” the CEO wrote in his post. This short comment suggests that Tesla will not be relying on traditional production systems to make Optimus. The company probably won’t even hire humans to produce the humanoid robot at one point. Instead, Optimus robots could simply produce other Optimus robots, allowing them to self-replicate.

Advertisement
-->

The Von Neumann is a hypothetical self-replicating spacecraft proposed by the mathematician and physicist John von Neumann in the 1940s–1950s. The hypothetical machine in the concept would be able to travel to a new star system or location, land, mine, and extract raw materials from planets, asteroids, and moons as needed, use those materials to manufacture copies of itself, and launch the new copies toward other star systems. 

If Optimus could pull off this ambitious target, the humanoid robot would indeed be the highest volume product ever created. It could, as Musk predicted, really change the world.

Continue Reading