Connect with us

News

SpaceX Starship’s Raptor engine test facilities are about to get a big upgrade, says Elon Musk

According to Elon Musk, SpaceX has plans to reactivate an old test stand in Texas to support vertical static fires of Starship's Raptor engines. (SpaceX)

Published

on

According to CEO Elon Musk, SpaceX’s Starship and Super Heavy rockets are about to get a new test stand that will enable additional and more useful static fire tests of their Raptor engines.

These modifications could reportedly lead to a simplified engine design and will generally expand SpaceX’s ability to rapidly acceptance-test a huge number of Raptors – a necessity given that each Starship/Super Heavy pair will need up to 43 engines.

Musk’s additional insight came by way of a tweet response to an article published today on NASASpaceflight.com, discussing SpaceX’s recently-unearthed plans to reactivate a test stand that hasn’t seen use in almost half a decade. Known as the tripod stand, the large concrete structure was originally built in the 1990s by Beal Aerospace, a now-defunct spaceflight startup, and came under SpaceX ownership when the company bought the McGregor, Texas facilities in 2003.

SpaceX repurposed the stand to static fire Falcon 9 boosters for a number of years, eventually replacing it with a ground-level installation in 2015 that has since been used to test more than 60 Falcon 9 (and Heavy) boosters. It’s not a huge surprise that SpaceX decided to make the change, given that the tripod stand necessarily placed Falcon boosters several hundred feet off the ground, making what was already a challenge even more arduous (and dangerous) for workers.

NASASpaceflight.com also notes that the stand produced far more noise pollution, encouraging SpaceX to move the replacement stand partially underground.

SpaceX replaced its tripod stand with a more functional ground-level test stand. (Teslarati/Aero Photo)

After four years of inactivity, NASASpaceflight.com photos show that SpaceX is well into the process of refurbishing McGregor’s tripod stand. This time, Musk says it will be modified to support vertical Raptor engine testing, likely requiring a new custom mount and new liquid methane and oxygen propellant farms.

By far the most interesting detail to come out of this development is Musk’s indication that moving Raptor static fires to a vertical stand could actually allow SpaceX to simplify the engine’s design by creating more flight-like test conditions (and thus better data). At the moment, all Raptor acceptance testing is done on a separate test stand located elsewhere at SpaceX’s McGregor facilities. Those stands are horizontal, an engineering decision likely motivated by their relatively cheap and fast construction thanks to sidestepping the need for large, water-cooled thrust diverters.

SpaceX’s horizontal Raptor test stand is pictured here in April 2018. A prototype Raptor can be seen in the center bay. (Aero Photo/Teslarati)

SpaceX does all of its Merlin Vacuum, Merlin 1D, Falcon 9 booster, and upper stage static fire testing on vertical stands at its McGregor facilities, with Raptor’s horizontal stands being the only exception to the rule. As such, it was likely just a matter of time before SpaceX replaced the horizontal Raptor facilities with vertical stands. Given that SpaceX plans to modify an entirely separate stand to support vertical testing, it’s likely that the company will modify the existing stands to support vertical testing as soon as the tripod stand is up and running.

SpaceX’s Merlin 1D (Vacuum and Sea Level) tests stands and an upper stage static fire mount are pictured here in April 2018. (April 17, Aero Photo)

For Falcon 9 and Heavy, SpaceX has relied on a total of five main engine/vehicle test stands: two for Merlin 1D, one for MVac, one for boosters, and one for upper stages. SpaceX builds engines and rockets in Hawthorne, tests every engine separately in Texas, returns them to Hawthorne, installs them on their respective booster/upper stage, and tests those stages in McGregor before they are shipped to their launch site.

Although that sounds undeniably arduous, the four stands pictured above (plus the F9 booster stand further up) have managed to support the entirety of SpaceX’s 82 launches. A new upper stage test stand is being built, but it has yet to be completed and is only necessary because Falcon 9 upper stages are expendable. According to SpaceX planning documents, Starship and Super Heavy will only perform static fire testing at the launch site. As such, something like the cluster of four Merlin stands above could very likely support the production and testing of 100-200+ Raptor engines annually, enough to build numerous boosters and ships.

SpaceX moves fast, so stay tuned for updates as work continues on the tripod stand and paves the way for even more significant changes at SpaceX’s McGregor, Texas test facilities.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla FSD fleet is nearing 7 billion total miles, including 2.5 billion city miles

As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles.

Published

on

Tesla’s Full Self-Driving (Supervised) fleet is closing in on almost 7 billion total miles driven, as per data posted by the company on its official FSD webpage. 

These figures hint at the massive scale of data fueling Tesla’s rapid FSD improvements, which have been quite notable as of late.

FSD mileage milestones

As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles. Tesla owner and avid FSD tester Whole Mars Catalog also shared a screenshot indicating that from the nearly 7 billion miles traveled by the FSD fleet, more than 2.5 billion miles were driven inside cities. 

City miles are particularly valuable for complex urban scenarios like unprotected turns, pedestrian interactions, and traffic lights. This is also the difference-maker for FSD, as only complex solutions, such as Waymo’s self-driving taxis, operate similarly on inner-city streets. And even then, incidents such as the San Francisco blackouts have proven challenging for sensor-rich vehicles like Waymos. 

Tesla’s data edge

Tesla has a number of advantages in the autonomous vehicle sector, one of which is the size of its fleet and the number of vehicles training FSD on real-world roads. Tesla’s nearly 7 billion FSD miles then allow the company to roll out updates that make its vehicles behave like they are being driven by experienced drivers, even if they are operating on their own. 

Advertisement
-->

So notable are Tesla’s improvements to FSD that NVIDIA Director of Robotics Jim Fan, after experiencing FSD v14, noted that the system is the first AI that passes what he described as a “Physical Turing Test.” 

“Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies,” Fan wrote in a post on X. 

Continue Reading

News

Tesla starts showing how FSD will change lives in Europe

Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.

Published

on

Credit: Grok Imagine

Tesla has launched Europe’s first public shuttle service using Full Self-Driving (Supervised) in the rural Eifelkreis Bitburg-Prüm region of Germany, demonstrating how the technology can restore independence and mobility for people who struggle with limited transport options. 

Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.

Officials see real impact on rural residents

Arzfeld Mayor Johannes Kuhl and District Administrator Andreas Kruppert personally tested the Tesla shuttle service. This allowed them to see just how well FSD navigated winding lanes and rural roads confidently. Kruppert said, “Autonomous driving sounds like science fiction to many, but we simply see here that it works totally well in rural regions too.” Kuhl, for his part, also noted that FSD “feels like a very experienced driver.”

The pilot complements the area’s “Citizen Bus” program, which provides on-demand rides for elderly residents who can no longer drive themselves. Tesla Europe shared a video of a demonstration of the service, highlighting how FSD gives people their freedom back, even in places where public transport is not as prevalent.

What the Ministry for Economic Affairs and Transport says

Rhineland-Palatinate’s Minister Daniela Schmitt supported the project, praising the collaboration that made this “first of its kind in Europe” possible. As per the ministry, the rural rollout for the service shows FSD’s potential beyond major cities, and it delivers tangible benefits like grocery runs, doctor visits, and social connections for isolated residents. 

Advertisement
-->

“Reliable and flexible mobility is especially vital in rural areas. With the launch of a shuttle service using self-driving vehicles (FSD supervised) by Tesla in the Eifelkreis Bitburg-Prüm, an innovative pilot project is now getting underway that complements local community bus services. It is the first project of its kind in Europe. 

“The result is a real gain for rural mobility: greater accessibility, more flexibility and tangible benefits for everyday life. A strong signal for innovation, cooperation and future-oriented mobility beyond urban centers,” the ministry wrote in a LinkedIn post

Continue Reading

News

Tesla China quietly posts Robotaxi-related job listing

Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.

Published

on

Credit: Tesla

Tesla has posted a new job listing in Shanghai explicitly tied to its Robotaxi program, fueling speculation that the company is preparing to launch its dedicated autonomous ride-hailing service in China. 

As noted in the listing, Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.

Robotaxi-specific role

The listing, which was shared on social media platform X by industry watcher @tslaming, suggested that Tesla China is looking to fill the role urgently. The job listing itself specifically mentions that the person hired for the role will be working on the Low Voltage Hardware team, which would design the circuit boards that would serve as the nervous system of the Robotaxi. 

Key tasks for the role, as indicated in the job listing, include collaboration with PCB layout, firmware, mechanical, program management, and validation teams, among other responsibilities. The role is based in Shanghai.

China Robotaxi launch

China represents a massive potential market for robotaxis, with its dense urban centers and supportive policies in select cities. Tesla has limited permission to roll out FSD in the country, though despite this, its vehicles have been hailed as among the best in the market when it comes to autonomous features. So far, at least, it appears that China supports Tesla’s FSD and Robotaxi rollout.

Advertisement
-->

This was hinted at in November, when Tesla brought the Cybercab to the 8th China International Import Expo (CIIE) in Shanghai, marking the first time that the autonomous two-seater was brought to the Asia-Pacific region. The vehicle, despite not having a release date in China, received a significant amount of interest among the event’s attendees. 

Continue Reading