Connect with us

News

SpaceX Starship’s Raptor engine test facilities are about to get a big upgrade, says Elon Musk

According to Elon Musk, SpaceX has plans to reactivate an old test stand in Texas to support vertical static fires of Starship's Raptor engines. (SpaceX)

Published

on

According to CEO Elon Musk, SpaceX’s Starship and Super Heavy rockets are about to get a new test stand that will enable additional and more useful static fire tests of their Raptor engines.

These modifications could reportedly lead to a simplified engine design and will generally expand SpaceX’s ability to rapidly acceptance-test a huge number of Raptors – a necessity given that each Starship/Super Heavy pair will need up to 43 engines.

Musk’s additional insight came by way of a tweet response to an article published today on NASASpaceflight.com, discussing SpaceX’s recently-unearthed plans to reactivate a test stand that hasn’t seen use in almost half a decade. Known as the tripod stand, the large concrete structure was originally built in the 1990s by Beal Aerospace, a now-defunct spaceflight startup, and came under SpaceX ownership when the company bought the McGregor, Texas facilities in 2003.

SpaceX repurposed the stand to static fire Falcon 9 boosters for a number of years, eventually replacing it with a ground-level installation in 2015 that has since been used to test more than 60 Falcon 9 (and Heavy) boosters. It’s not a huge surprise that SpaceX decided to make the change, given that the tripod stand necessarily placed Falcon boosters several hundred feet off the ground, making what was already a challenge even more arduous (and dangerous) for workers.

NASASpaceflight.com also notes that the stand produced far more noise pollution, encouraging SpaceX to move the replacement stand partially underground.

SpaceX replaced its tripod stand with a more functional ground-level test stand. (Teslarati/Aero Photo)

After four years of inactivity, NASASpaceflight.com photos show that SpaceX is well into the process of refurbishing McGregor’s tripod stand. This time, Musk says it will be modified to support vertical Raptor engine testing, likely requiring a new custom mount and new liquid methane and oxygen propellant farms.

By far the most interesting detail to come out of this development is Musk’s indication that moving Raptor static fires to a vertical stand could actually allow SpaceX to simplify the engine’s design by creating more flight-like test conditions (and thus better data). At the moment, all Raptor acceptance testing is done on a separate test stand located elsewhere at SpaceX’s McGregor facilities. Those stands are horizontal, an engineering decision likely motivated by their relatively cheap and fast construction thanks to sidestepping the need for large, water-cooled thrust diverters.

SpaceX’s horizontal Raptor test stand is pictured here in April 2018. A prototype Raptor can be seen in the center bay. (Aero Photo/Teslarati)

SpaceX does all of its Merlin Vacuum, Merlin 1D, Falcon 9 booster, and upper stage static fire testing on vertical stands at its McGregor facilities, with Raptor’s horizontal stands being the only exception to the rule. As such, it was likely just a matter of time before SpaceX replaced the horizontal Raptor facilities with vertical stands. Given that SpaceX plans to modify an entirely separate stand to support vertical testing, it’s likely that the company will modify the existing stands to support vertical testing as soon as the tripod stand is up and running.

SpaceX’s Merlin 1D (Vacuum and Sea Level) tests stands and an upper stage static fire mount are pictured here in April 2018. (April 17, Aero Photo)

For Falcon 9 and Heavy, SpaceX has relied on a total of five main engine/vehicle test stands: two for Merlin 1D, one for MVac, one for boosters, and one for upper stages. SpaceX builds engines and rockets in Hawthorne, tests every engine separately in Texas, returns them to Hawthorne, installs them on their respective booster/upper stage, and tests those stages in McGregor before they are shipped to their launch site.

Although that sounds undeniably arduous, the four stands pictured above (plus the F9 booster stand further up) have managed to support the entirety of SpaceX’s 82 launches. A new upper stage test stand is being built, but it has yet to be completed and is only necessary because Falcon 9 upper stages are expendable. According to SpaceX planning documents, Starship and Super Heavy will only perform static fire testing at the launch site. As such, something like the cluster of four Merlin stands above could very likely support the production and testing of 100-200+ Raptor engines annually, enough to build numerous boosters and ships.

SpaceX moves fast, so stay tuned for updates as work continues on the tripod stand and paves the way for even more significant changes at SpaceX’s McGregor, Texas test facilities.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Tesla says texting and driving capability is coming ‘in a month or two’

“In the next month or two, we’re going to look at the safety statistics, but we’re going to allow you to text and drive, essentially.”

Published

on

Credit: Tesla

Tesla CEO Elon Musk said that within the next month or two, the company will be able to open the ability for people to text and drive because its Full Self-Driving suite will be robust enough to allow drivers to take their attention away from the road.

In its current state, Tesla Full Self-Driving is a supervised driver assistance suite that requires the vehicle operator to maintain control of the vehicle and pay attention to the road surroundings.

However, the company has been aiming to release a fully autonomous version of the Full Self-Driving suite for years, teasing its future potential and aiming to release a Level 5 suite as soon as possible.

CEO Elon Musk believes the company is on the cusp of something drastic, according to what he said at yesterday’s Annual Shareholder Meeting.

One thing Musk hinted at was that the company should be able to allow those sitting in the driver’s seat of their cars to text and drive “in the next month or two,” as long as the statistics look good.

He said:

“In the next month or two, we’re going to look at the safety statistics, but we’re going to allow you to text and drive, essentially.”

The company recently transitioned to its v14 Full Self-Driving suite, which is its most robust to date, and recently expanded to Cybertruck, completing its rollout across the vehicle lineup.

Currently, Tesla is running v14.1.5, and when major improvements are made, that second number will increase, meaning v14.2 will be the next substantial improvement.

Musk said that v14.3 will be when you can “pretty much fall asleep and wake up at your destination.”

We’ve heard a considerable amount of similar statements in the past, and Tesla owners have been conditioned to take some of these timeframes with autonomous driving with a grain of salt.

However, with the upgrades in FSD over the past few months, especially with the rollout of Robotaxi in Austin, which does not utilize anyone in the driver’s seat for local roads, it does not seem as if autonomy is that far off for Tesla.

Continue Reading

News

Tesla Semi undergoes major redesign as dedicated factory preps for deliveries

The Semi has been one of the most anticipated products in the Tesla lineup due to the disruption it could cause in the trucking industry.

Published

on

Tesla put its all-electric Semi truck through quite a major redesign as its dedicated factory for the vehicle is preparing for initial deliveries to the public starting next year.

The Semi has been one of the most anticipated products in the Tesla lineup due to the disruption it could cause in the trucking industry.

It has already been in numerous pilot programs for some pretty large companies over the past couple of years, PepsiCo. being one of them, and it is moving toward first deliveries to other companies sometime in 2026.

Yesterday at the 2025 Annual Shareholder Meeting, Tesla unveiled its new Semi design, which underwent a pretty significant facelift to match the aesthetic and vibe of the other vehicles in the company’s lineup.

Additionally, Tesla announced some other improvements, including changes to efficiency, and some other changes that we did not get details on yet.

The first change was to the design of the Semi, as Tesla adopted its blade-like light bar for the Class 8 truck, similar to the one that is used on the new Model Y and the Cybertruck:

There also appear to be a handful of design changes that help with aerodynamics, as its efficiency has increased to 1.7 kWh per mile.

Tesla also said it has an increased payload capability, which will help companies to haul more goods per trip.

All of these changes come as the company’s Semi Factory, which is located on the same property as its Gigafactory in Reno, Nevada, is just finishing up. In late October, it was shown that the Semi facility is nearly complete, based on recent drone imagery from factory observer HinrichsZane on X:

Tesla Semi factory looks nearly complete

The factory will be capable of producing about 50,000 Tesla Semi units annually when it is completely ramped. The company has major plans to help get the Semi in more fleets across the United States.

Other entities are also working to develop a charging corridor for electric Class 8 trucks. The State of California was awarded $102 million to develop a charging corridor that spans from Washington to Southern California.

Another corridor is being developed that spans from Southern California to Texas, and 49 applicants won $636 million from the Department of Transportation for it.

Tesla requested funding for it, but was denied.

The Semi has been a staple in several companies’ fleets over the past few years, most notably that of Frito-Lay and PepsiCo., who have reported positive experiences thus far.

Musk said last year that the Semi had “ridiculous demand.”

Continue Reading

News

Tesla Cybercab production starts Q2 2026, Elon Musk confirms

Elon Musk highlighted that the fully autonomous vehicle will be the first Tesla designed specifically for unsupervised self-driving.

Published

on

Credit: Tesla/X

Tesla CEO Elon Musk confirmed that production of the company’s autonomous Cybercab will begin in April 2026, and its production targets will be quite ambitious. 

Speaking at Tesla’s 2025 Annual Shareholder Meeting, Musk highlighted that the fully autonomous vehicle will be the first Tesla designed specifically for unsupervised self-driving.

A robotaxi built for an autonomous world

Musk described the Cybercab as a clean-slate design optimized for autonomy, with no steering wheel, pedals, or side mirrors. “It’s very much optimized for the lowest cost per mile in an autonomous mode,” Musk said, adding that every Tesla produced in recent years already carries the hardware needed for full self-driving.

The Cybercab will be assembled at Giga Texas and will serve as the company’s flagship entry into the commercial robotaxi market. Musk emphasized that the project represents Tesla’s next evolutionary step in combining vehicle manufacturing, artificial intelligence, and mobility services.

One Cybercab every ten seconds

Musk reiterated that the Cybercab’s production process is more closely modeled on consumer electronics assembly than on traditional automotive manufacturing. This should pave the way for outputs that far exceed conventional automotive products.

Advertisement

“That production is happening right here in this factory, and we’ll be starting production in April next year. The manufacturing system is unlike any other car. The manufacturing system of the Cybercab, it’s closer to a high volume consumer electronics device than it is a car manufacturing line. So the net result is that I think we should be able to achieve, I think, ultimately, less than a 10-second cycle time, basically a unit every 10 seconds.

“What that would mean is you could get on a line that would normally produce, say, 500,000 cars a year at a one minute cycle time, Model Y. This would be maybe as much as 2 million or 3 million, maybe ultimately it’s theoretically possible to achieve a 5 million unit production line if you can get to the 5-second cycle time,” the CEO said.

Continue Reading

Trending