News
SpaceX CEO Elon Musk promises long-awaited Starship update next week
While running behind schedule in classic fashion, SpaceX CEO Elon Musk says he’ll present the first big Starship program update in two and a half years on Thursday, February 10th.
Additionally, as an apparent centerpiece for the event and update, Musk says that SpaceX will perform the second-ever “full stack” fit test with a Starship upper stage and Super Heavy booster.
Starship S20 and Super Heavy booster B4 were stacked for the first time in early August 2021, when both stages were still weeks or even months away from some degree of completion. Only months later did Starship S20 kick off a multi-month period of qualification tests, eventually becoming the first Starship prototype to successfully test a full six Raptor engines at once. Super Heavy B4, on the other hand, had an even more painful time for unknown reasons and only graduated to basic cryogenic proof testing in mid-December – more than four months later.
While the booster has had a full 29 Raptor 1 engines installed for months, the booster has yet to perform or attempt a single static fire of any number of those engines and hasn’t even managed a basic wet dress rehearsal with real liquid oxygen and methane propellant. Eventually, SpaceX did perform a handful of Booster 4 Raptor ignition tests, but those were almost more of a test of the launch pad than Super Heavy itself. The slow and minimal progress SpaceX has made testing Super Heavy B4 may actually be because of issues with orbital launch pad’s tank farm design. To this day, while the oxygen and nitrogen half of the farm are already storing thousands of tons of propellant and coolant, the fuel side of the same farm has yet to be filled with any methane. That makes thoroughly testing a Super Heavy booster much harder, though there are some obvious workarounds SpaceX could have made if it had really wanted to start proof testing Booster 4 as soon as possible.
In fact, it’s no longer clear if Ship 20 and Booster 4 will actually get to fulfill their original goal of supporting Starship’s first orbital (velocity) test flight. Nonetheless, they are still two giant, nearly completed stages that together form a full Starship ‘stack.’
Heading into 2022, SpaceX appears to be more focused on testing a somewhat extraneous part of the first orbital Starship launch site – “chopstick” arms installed on the launch tower. SpaceX’s current Starship ‘launch tower’ design centers around the need for three giant swinging arms – one to fuel and power Starship and the other two to lift, stack, and – maybe one day – catch Super Heavy boosters and ships. Had SpaceX stayed true to the original Starship/BFR/ITS design, the booster would have been fueled through the launch mount and Starship would have been fueled through a connection with the booster, significantly simplifying the tower.
In theory, replacing that design with a complex, building-sized umbilical arm might ultimately improve Starship’s nominal payload to orbit by a few percent. Additionally, using the even more complex “chopsticks” – a pair of giant arms – to lift and stack Super Heavy and Starship may actually be a smart design, as it could theoretically free SpaceX from the painful operational constraints imposed by large cranes.
By all appearances, that’s exactly what SpaceX plans to test next week. Starship S20 has already been moved adjacent to the launch tower and Super Heavy B4 has been attached to a crane (somewhat ironically) in preparation for its own move to the tower. For the first time, SpaceX might use the tower arms to lift Super Heavy onto the orbital launch mount, stabilize the booster, and then lift and stack Starship on top of it – all without a crane, in theory. Of course, insofar as SpaceX performed the first full-stack fit test with a crane, the tower’s lift/catch arms only really become irreplaceable once waiting a few days for safe lift conditions becomes a bottleneck for Starship launch operations.
Nonetheless, a successful stacking operation with those arms would be an impressive technical feat and demonstrate one of the things needed for all-weather Starship launch operations, even if it won’t leave SpaceX any closer to orbital test flights than it was before.
Elon Musk
Starlink passes 9 million active customers just weeks after hitting 8 million
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
SpaceX’s Starlink satellite internet service has continued its rapid global expansion, surpassing 9 million active customers just weeks after crossing the 8 million mark.
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
9 million customers
In a post on X, SpaceX stated that Starlink now serves over 9 million active users across 155 countries, territories, and markets. The company reached 8 million customers in early November, meaning it added roughly 1 million subscribers in under seven weeks, or about 21,275 new users on average per day.
“Starlink is connecting more than 9M active customers with high-speed internet across 155 countries, territories, and many other markets,” Starlink wrote in a post on its official X account. SpaceX President Gwynne Shotwell also celebrated the milestone on X. “A huge thank you to all of our customers and congrats to the Starlink team for such an incredible product,” she wrote.
That growth rate reflects both rising demand for broadband in underserved regions and Starlink’s expanding satellite constellation, which now includes more than 9,000 low-Earth-orbit satellites designed to deliver high-speed, low-latency internet worldwide.
Starlink’s momentum
Starlink’s momentum has been building up. SpaceX reported 4.6 million Starlink customers in December 2024, followed by 7 million by August 2025, and 8 million customers in November. Independent data also suggests Starlink usage is rising sharply, with Cloudflare reporting that global web traffic from Starlink users more than doubled in 2025, as noted in an Insider report.
Starlink’s momentum is increasingly tied to SpaceX’s broader financial outlook. Elon Musk has said the satellite network is “by far” the company’s largest revenue driver, and reports suggest SpaceX may be positioning itself for an initial public offering as soon as next year, with valuations estimated as high as $1.5 trillion. Musk has also suggested in the past that Starlink could have its own IPO in the future.
News
NVIDIA Director of Robotics: Tesla FSD v14 is the first AI to pass the “Physical Turing Test”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine.
NVIDIA Director of Robotics Jim Fan has praised Tesla’s Full Self-Driving (Supervised) v14 as the first AI to pass what he described as a “Physical Turing Test.”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine. And just like smartphones today, removing it now would “actively hurt.”
Jim Fan’s hands-on FSD v14 impressions
Fan, a leading researcher in embodied AI who is currently solving Physical AI at NVIDIA and spearheading the company’s Project GR00T initiative, noted that he actually was late to the Tesla game. He was, however, one of the first to try out FSD v14.
“I was very late to own a Tesla but among the earliest to try out FSD v14. It’s perhaps the first time I experience an AI that passes the Physical Turing Test: after a long day at work, you press a button, lay back, and couldn’t tell if a neural net or a human drove you home,” Fan wrote in a post on X.
Fan added: “Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies.”
The Physical Turing Test
The original Turing Test was conceived by Alan Turing in 1950, and it was aimed at determining if a machine could exhibit behavior that is equivalent to or indistinguishable from a human. By focusing on text-based conversations, the original Turing Test set a high bar for natural language processing and machine learning.
This test has been passed by today’s large language models. However, the capability to converse in a humanlike manner is a completely different challenge from performing real-world problem-solving or physical interactions. Thus, Fan introduced the Physical Turing Test, which challenges AI systems to demonstrate intelligence through physical actions.
Based on Fan’s comments, Tesla has demonstrated these intelligent physical actions with FSD v14. Elon Musk agreed with the NVIDIA executive, stating in a post on X that with FSD v14, “you can sense the sentience maturing.” Musk also praised Tesla AI, calling it the best “real-world AI” today.
News
Tesla AI team burns the Christmas midnight oil by releasing FSD v14.2.2.1
The update was released just a day after FSD v14.2.2 started rolling out to customers.
Tesla is burning the midnight oil this Christmas, with the Tesla AI team quietly rolling out Full Self-Driving (Supervised) v14.2.2.1 just a day after FSD v14.2.2 started rolling out to customers.
Tesla owner shares insights on FSD v14.2.2.1
Longtime Tesla owner and FSD tester @BLKMDL3 shared some insights following several drives with FSD v14.2.2.1 in rainy Los Angeles conditions with standing water and faded lane lines. He reported zero steering hesitation or stutter, confident lane changes, and maneuvers executed with precision that evoked the performance of Tesla’s driverless Robotaxis in Austin.
Parking performance impressed, with most spots nailed perfectly, including tight, sharp turns, in single attempts without shaky steering. One minor offset happened only due to another vehicle that was parked over the line, which FSD accommodated by a few extra inches. In rain that typically erases road markings, FSD visualized lanes and turn lines better than humans, positioning itself flawlessly when entering new streets as well.
“Took it up a dark, wet, and twisty canyon road up and down the hill tonight and it went very well as to be expected. Stayed centered in the lane, kept speed well and gives a confidence inspiring steering feel where it handles these curvy roads better than the majority of human drivers,” the Tesla owner wrote in a post on X.
Tesla’s FSD v14.2.2 update
Just a day before FSD v14.2.2.1’s release, Tesla rolled out FSD v14.2.2, which was focused on smoother real-world performance, better obstacle awareness, and precise end-of-trip routing. According to the update’s release notes, FSD v14.2.2 upgrades the vision encoder neural network with higher resolution features, enhancing detection of emergency vehicles, road obstacles, and human gestures.
New Arrival Options also allowed users to select preferred drop-off styles, such as Parking Lot, Street, Driveway, Parking Garage, or Curbside, with the navigation pin automatically adjusting to the ideal spot. Other refinements include pulling over for emergency vehicles, real-time vision-based detours for blocked roads, improved gate and debris handling, and Speed Profiles for customized driving styles.