News
SpaceX CEO Elon Musk promises long-awaited Starship update next week
While running behind schedule in classic fashion, SpaceX CEO Elon Musk says he’ll present the first big Starship program update in two and a half years on Thursday, February 10th.
Additionally, as an apparent centerpiece for the event and update, Musk says that SpaceX will perform the second-ever “full stack” fit test with a Starship upper stage and Super Heavy booster.
Starship S20 and Super Heavy booster B4 were stacked for the first time in early August 2021, when both stages were still weeks or even months away from some degree of completion. Only months later did Starship S20 kick off a multi-month period of qualification tests, eventually becoming the first Starship prototype to successfully test a full six Raptor engines at once. Super Heavy B4, on the other hand, had an even more painful time for unknown reasons and only graduated to basic cryogenic proof testing in mid-December – more than four months later.
While the booster has had a full 29 Raptor 1 engines installed for months, the booster has yet to perform or attempt a single static fire of any number of those engines and hasn’t even managed a basic wet dress rehearsal with real liquid oxygen and methane propellant. Eventually, SpaceX did perform a handful of Booster 4 Raptor ignition tests, but those were almost more of a test of the launch pad than Super Heavy itself. The slow and minimal progress SpaceX has made testing Super Heavy B4 may actually be because of issues with orbital launch pad’s tank farm design. To this day, while the oxygen and nitrogen half of the farm are already storing thousands of tons of propellant and coolant, the fuel side of the same farm has yet to be filled with any methane. That makes thoroughly testing a Super Heavy booster much harder, though there are some obvious workarounds SpaceX could have made if it had really wanted to start proof testing Booster 4 as soon as possible.
In fact, it’s no longer clear if Ship 20 and Booster 4 will actually get to fulfill their original goal of supporting Starship’s first orbital (velocity) test flight. Nonetheless, they are still two giant, nearly completed stages that together form a full Starship ‘stack.’
Heading into 2022, SpaceX appears to be more focused on testing a somewhat extraneous part of the first orbital Starship launch site – “chopstick” arms installed on the launch tower. SpaceX’s current Starship ‘launch tower’ design centers around the need for three giant swinging arms – one to fuel and power Starship and the other two to lift, stack, and – maybe one day – catch Super Heavy boosters and ships. Had SpaceX stayed true to the original Starship/BFR/ITS design, the booster would have been fueled through the launch mount and Starship would have been fueled through a connection with the booster, significantly simplifying the tower.
In theory, replacing that design with a complex, building-sized umbilical arm might ultimately improve Starship’s nominal payload to orbit by a few percent. Additionally, using the even more complex “chopsticks” – a pair of giant arms – to lift and stack Super Heavy and Starship may actually be a smart design, as it could theoretically free SpaceX from the painful operational constraints imposed by large cranes.
By all appearances, that’s exactly what SpaceX plans to test next week. Starship S20 has already been moved adjacent to the launch tower and Super Heavy B4 has been attached to a crane (somewhat ironically) in preparation for its own move to the tower. For the first time, SpaceX might use the tower arms to lift Super Heavy onto the orbital launch mount, stabilize the booster, and then lift and stack Starship on top of it – all without a crane, in theory. Of course, insofar as SpaceX performed the first full-stack fit test with a crane, the tower’s lift/catch arms only really become irreplaceable once waiting a few days for safe lift conditions becomes a bottleneck for Starship launch operations.
Nonetheless, a successful stacking operation with those arms would be an impressive technical feat and demonstrate one of the things needed for all-weather Starship launch operations, even if it won’t leave SpaceX any closer to orbital test flights than it was before.
News
Elon Musk’s Grok AI to be used in U.S. War Department’s bespoke AI platform
The partnership aims to provide advanced capabilities to 3 million military and civilian personnel.
The U.S. Department of War announced Monday an agreement with Elon Musk’s xAI to embed the company’s frontier artificial intelligence systems, powered by the Grok family of models, into the department’s bespoke AI platform GenAI.mil.
The partnership aims to provide advanced capabilities to 3 million military and civilian personnel, with initial deployment targeted for early 2026 at Impact Level 5 (IL5) for secure handling of Controlled Unclassified Information.
xAI Integration
As noted by the War Department’s press release, GenAI.mil, its bespoke AI platform, will gain xAI for the Government’s suite of tools, which enable real-time global insights from the X platform for “decisive information advantage.” The rollout builds on xAI’s July launch of products for U.S. government customers, including federal, state, local, and national security use cases.
“Targeted for initial deployment in early 2026, this integration will allow all military and civilian personnel to use xAI’s capabilities at Impact Level 5 (IL5), enabling the secure handling of Controlled Unclassified Information (CUI) in daily workflows. Users will also gain access to real‑time global insights from the X platform, providing War Department personnel with a decisive information advantage,” the Department of War wrote in a press release.
Strategic advantages
The deal marks another step in the Department of War’s efforts to use cutting-edge AI in its operations. xAI, for its part, highlighted that its tools can support administrative tasks at the federal, state and local levels, as well as “critical mission use cases” at the front line of military operations.
“The War Department will continue scaling an AI ecosystem built for speed, security, and decision superiority. Newly IL5-certified capabilities will empower every aspect of the Department’s workforce, turning AI into a daily operational asset. This announcement marks another milestone in America’s AI revolution, and the War Department is driving that momentum forward,” the War Department noted.
News
Tesla FSD (Supervised) v14.2.2 starts rolling out
The update focuses on smoother real-world performance, better obstacle awareness, and precise end-of-trip routing, among other improvements.
Tesla has started rolling out Full Self-Driving (Supervised) v14.2.2, bringing further refinements to its most advanced driver-assist system. The new FSD update focuses on smoother real-world performance, better obstacle awareness, and precise end-of-trip routing, among other improvements.
Key FSD v14.2.2 improvements
As noted by Not a Tesla App, FSD v14.2.2 upgrades the vision encoder neural network with higher resolution features, enhancing detection of emergency vehicles, road obstacles, and human gestures. New Arrival Options let users select preferred drop-off styles, such as Parking Lot, Street, Driveway, Parking Garage, or Curbside, with the navigation pin automatically adjusting to the user’s ideal spot for precision.
Other additions include pulling over for emergency vehicles, real-time vision-based detours for blocked roads, improved gate and debris handling, and extreme Speed Profiles for customized driving styles. Reliability gains cover fault recovery, residue alerts on the windshield, and automatic narrow-field camera washing for new 2026 Model Y units.
FSD v14.2.2 also boosts unprotected turns, lane changes, cut-ins, and school bus scenarios, among other things. Tesla also noted that users’ FSD statistics will be saved under Controls > Autopilot, which should help drivers easily view how much they are using FSD in their daily drives.
Key FSD v14.2.2 release notes
Full Self-Driving (Supervised) v14.2.2 includes:
- Upgraded the neural network vision encoder, leveraging higher resolution features to further improve scenarios like handling emergency vehicles, obstacles on the road, and human gestures.
- Added Arrival Options for you to select where FSD should park: in a Parking Lot, on the Street, in a Driveway, in a Parking Garage, or at the Curbside.
- Added handling to pull over or yield for emergency vehicles (e.g. police cars, fire trucks, ambulances).
- Added navigation and routing into the vision-based neural network for real-time handling of blocked roads and detours.
- Added additional Speed Profile to further customize driving style preference.
- Improved handling for static and dynamic gates.
- Improved offsetting for road debris (e.g. tires, tree branches, boxes).
- Improve handling of several scenarios, including unprotected turns, lane changes, vehicle cut-ins, and school buses.
- Improved FSD’s ability to manage system faults and recover smoothly from degraded operation for enhanced reliability.
- Added alerting for residue build-up on interior windshield that may impact front camera visibility. If affected, visit Service for cleaning!
- Added automatic narrow field washing to provide rapid and efficient front camera self-cleaning, and optimize aerodynamics wash at higher vehicle speed.
- Camera visibility can lead to increased attention monitoring sensitivity.
Upcoming Improvements:
- Overall smoothness and sentience.
- Parking spot selection and parking quality.
News
Tesla is not sparing any expense in ensuring the Cybercab is safe
Images shared by the longtime watcher showed 16 Cybercab prototypes parked near Giga Texas’ dedicated crash test facility.
The Tesla Cybercab could very well be the safest taxi on the road when it is released and deployed for public use. This was, at least, hinted at by the intensive safety tests that Tesla seems to be putting the autonomous two-seater through at its Giga Texas crash test facility.
Intensive crash tests
As per recent images from longtime Giga Texas watcher and drone operator Joe Tegtmeyer, Tesla seems to be very busy crash testing Cybercab units. Images shared by the longtime watcher showed 16 Cybercab prototypes parked near Giga Texas’ dedicated crash test facility just before the holidays.
Tegtmeyer’s aerial photos showed the prototypes clustered outside the factory’s testing building. Some uncovered Cybercabs showed notable damage and one even had its airbags engaged. With Cybercab production expected to start in about 130 days, it appears that Tesla is very busy ensuring that its autonomous two-seater ends up becoming the safest taxi on public roads.
Prioritizing safety
With no human driver controls, the Cybercab demands exceptional active and passive safety systems to protect occupants in any scenario. Considering Tesla’s reputation, it is then understandable that the company seems to be sparing no expense in ensuring that the Cybercab is as safe as possible.
Tesla’s focus on safety was recently highlighted when the Cybertruck achieved a Top Safety Pick+ rating from the Insurance Institute for Highway Safety (IIHS). This was a notable victory for the Cybertruck as critics have long claimed that the vehicle will be one of, if not the, most unsafe truck on the road due to its appearance. The vehicle’s Top Safety Pick+ rating, if any, simply proved that Tesla never neglects to make its cars as safe as possible, and that definitely includes the Cybercab.