Connect with us

SpaceX

SpaceX fairing catcher Mr. Steven heads for Panama Canal after one last drop test

Published

on

Iconic fairing recovery vessel Mr. Steven appears to have quietly departed for SpaceX’s Florida launch facilities a few days after completing (successfully or not) one final controlled fairing catch test in the Pacific Ocean.

While bittersweet for those that have closely followed the vessel’s development and many attempted Falcon fairing recoveries, this move should ultimately give Mr. Steven around three times as many opportunities to attempt fairing recoveries thanks to SpaceX’s significantly higher East Coast launch cadence.

Under SpaceX lease since late 2017, the company moved the vessel to California and modified it with its first net and set of arms around December 2017. Mr. Steven attempted his first Falcon fairing catch – each half worth more than $3M – in February 2018 after the launch of Earth imaging satellite PAZ and two SpaceX Starlink prototypes, thus beginning a string of five unsuccessful recovery attempts for West Coast Falcon 9 launches. The lack of success has most certainly not been for a lack of trying, exemplified in large part by Mr. Steven’s frequent net and arm upgrades over the last year, culminating in the installation of four massive arms, a vast primary net, and a smaller secondary net below it.

Advertisement

SpaceX engineers and technicians repeatedly managed to get Falcon fairing halves – autonomously guided by GPS after deploying parafoils – within 50 to a few hundred feet during several of those five post-launch attempts. In the last few months of 2018, SpaceX also began a program of controlled fairing drop tests, where a helicopter would lift a fairing half 5,000-10,000 feet up before releasing it for Mr. Steven. A recent drop test organized in either late-December or early-January saw the parasailing fairing half get so close to a successful catch that its parafoil rigging actually appeared to get tangled on (or at least bump) the edge of Mr. Steven’s net, spanning an area of around 3000 square meters (~30,000 sq ft).

Barring a continuation of SpaceX’s helicopter drop test program on the East Coast, Mr. Steven’s final controlled fairing recovery attempt occurred on January 25th, perhaps less than four days before the ship departed for Florida. After maneuvering wildly and reaching 28 mph (45 km/h) – the fastest speed yet clocked – on his trip back to port, Mr. Steven arrived with a fairing half tantalizingly cradled in the ship’s new secondary net, a perfectly ambiguous state that could indicate a successful catch and net transfer or a missed catch and ocean retrieval, with the smaller net used as an ad-hoc shock absorber during his sprint to port.

Back to Port Canaveral

Prior to Mr. Steven’s California station and arm/net upgrade, the vessel was introduced to SpaceX in Florida as a sort of faster version of the slower service vessels already used to support drone ship deployments and recover fairing halves (or shards) out of the ocean. Although it remains entirely possible that Mr. Steven’s abrupt journey towards southern Mexico is a false alarm, it appears quite likely that the vessel will ultimately end up back where it started its SpaceX journey. After returning to Port Canaveral, Mr. Steven should be able to support a range of post-launch fairing recovery attempts thanks to SpaceX’s consistently-busy East Coast launch schedule.

Advertisement

At his current cruising speed of ~18 knots (21 mph/35 km/h), Mr. Steven will take at least 9-10 days (~220-240 hours) to travel the ~7500 km (4600 mi) of ocean separating Port of LA and Port Canaveral. Even assuming many lengthy stops for fuel and supplies, the vessel should easily arrive in time to attempt its first East Coast fairing catch in support of SpaceX’s next launch, NET February 18th. After that, Crew Dragon’s inaugural orbital launch (DM-1) is targeted for late February, followed by Cargo Dragon’s 17th operational mission (NET March 16th) and the second-ever launch of Falcon Heavy, absolutely no earlier than March 7th.


Check out Teslarati’s newsletters for prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket launch and recovery processes!

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

WATCH: SpaceX Starship Flight 10 launch

Published

on

Credit: SpaceX

SpaceX is set to launch its tenth test flight of the Starship program, with a launch window that will open at 6:44 p.m. local time, or 7:44 p.m. on the East Coast.

Starship’s tenth test flight was originally scheduled for launch yesterday with a one-hour window that opened at 7:30 p.m. ET, but it was called off 17 minutes before that window even had a chance to open.

Starship Flight 10 rescheduled as SpaceX targets Monday launch

SpaceX moved the flight to tonight. It was also originally scheduled to have a launch window at the same time as Sunday, but it was pushed back 14 minutes to around 6:30 p.m. ET. There are storms in the area, as well as clouds over Starbase, so there is the off chance for another launch delay.

There are several big objectives for this launch, including the expansion of the operating envelope for the Super Heavy booster. SpaceX says there are “multiple landing burn tests planned.”

Advertisement

The booster will also be performing a few in-flight experiments to help with data collection. Specifically, real-world performance data on future flight profiles and off-nominal scenarios will be on the list of things SpaceX will be looking for.

Starship itself will have a few in-flight objectives that include the deployment of eight Starlink simulators that are similar in size to the next-gen satellites for the internet service. SpaceX was set to test this with Starship’s seventh test flight, which occurred in January 2025. However, the task was abandoned as the vehicle was destroyed before deployment could occur.

Liftoff conditions are currently looking favorable, and SpaceX will be eager to improve upon its Starship launch program as CEO Elon Musk has big plans for it in the coming years.

You can watch the launch below via SpaceFlight Now:

Advertisement
Continue Reading

News

Starship Flight 10 rescheduled as SpaceX targets Monday launch

SpaceX said it is now targeting Monday evening for Starship’s 10th flight test.

Published

on

Credit: SpaceX/X

SpaceX stood down from its planned Starship Flight 10 on Sunday evening, citing an issue with ground systems. 

The launch attempt was scheduled during a one-hour window that opened at 7:30 p.m. ET, but it was called off just 17 minutes before the window opened. SpaceX said it is now targeting Monday evening for Starship’s 10th flight test.

Flight 10 rescheduled

A lot of excitement was palpable during the lead up to Starship Flight 10’s first launch window. After the failures of Starship Flight 9, many were interested to see if SpaceX would be able to nail its mission objectives this time around. Starship itself seemed ready to fly, with the upper stage being loaded with propellant as scheduled. Later on, SpaceX also noted that Starship’s Super Heavy booster was also being loaded with propellant.

However, 17 before the launch window opened, SpaceX noted that it was “standing down from today’s tenth flight of Starship to allow time to troubleshoot an issue with ground systems.” Elon Musk, in a post on X, further clarified that a “ground side liquid oxygen leak needs to be fixed.” Musk did state that SpaceX will attempt Flight 10 again on Monday, August 25, 2025.

Starship and SpaceX’s development goals

The fully integrated Starship system is the tallest and most powerful rocket ever built, standing over 400 feet when stacked. Composed of the reusable Super Heavy booster and the Starship upper stage, the vehicle is central to SpaceX’s long-term ambitions of lunar and Martian missions. NASA has already selected Starship as the crewed lunar lander for Artemis, with its first astronaut landing mission tentatively set for 2027, as noted in a Space.com report.

Advertisement

So far, Starship has flown nine times from Starbase in Texas, with three launches this year alone. Each flight has offered critical data, though all three 2025 missions encountered notable failures. Flight 7 and Flight 8 ended in explosions less than 10 minutes after launch, while Flight 9 broke apart during reentry. Despite setbacks, SpaceX has continued refining Starship’s hardware and operations with each attempt. Needless to say, a successful Flight 10 would be a significant win for the Starship program.

Continue Reading

Elon Musk

SpaceX Starship Flight 10: What to expect

SpaceX implemented hardware and operational changes aimed at improving Starship’s reliability.

Published

on

Credit: SpaceX

SpaceX is preparing to launch the tenth test flight of its Starship vehicle as early as Sunday, August 24, with the launch window opening at 6:30 p.m. CT. 

The mission follows investigations into anomalies from earlier flights, including the loss of Starship on its ninth test and a Ship 36 static fire issue. SpaceX has since implemented hardware and operational changes aimed at improving Starship’s reliability.

Booster landing burns and flight experiments

The upcoming Starship Flight 10 will expand Super Heavy’s flight envelope with multiple landing burn trials. Following stage separation, the booster will attempt a controlled flip and boostback burn before heading to an offshore splashdown in the Gulf of America. One of the three center engines typically used for landing will be intentionally disabled, allowing engineers to evaluate whether a backup engine can complete the maneuver, according to a post from SpaceX.

The booster will also transition to a two-engine configuration for the final phase, hovering briefly above the water before shutdown and drop. These experiments are designed to simulate off-nominal scenarios and generate real-world data on performance under varying conditions, while maximizing propellant use during ascent to enable heavier payloads.

Starship upper stage reentry tests

The Starship upper stage will attempt multiple in-space objectives, including deployment of eight Starlink simulators and a planned Raptor engine relight. SpaceX will also continue testing reentry systems with several modifications. A section of thermal protection tiles has been removed to expose vulnerable areas, while new metallic tile designs, including one with active cooling, will be trialed.

Advertisement

Catch fittings have been installed to evaluate their thermal and structural performance, and adjustments to the tile line will address hot spots observed on Flight 6. The reentry profile is expected to push the structural limits of Starship’s rear flaps at maximum entry pressure.

SpaceX says lessons from these tests are critical to refining the next-generation Starship and Super Heavy vehicles. With Starfactory production ramping in Texas and new launch infrastructure under development in Florida, the company is pushing to hit its goal of achieving a fully reusable orbital launch system.

Continue Reading

Trending