News
SpaceX Falcon 9 crushes next-gen ULA Vulcan rocket on cost in first competition
The United Launch Alliance’s (ULA) next-generation Vulcan Centaur rocket appears to have made it through what could be described as its first real competition with SpaceX and its Falcon 9 workhorse.
The US Space Force (or Air Force) awarded both rockets two launch contracts each on March 9th, marking the second award under “Phase 2” of a new National Security Space Launch (NSSL; formerly Evolved Expendable Launch Vehicle or EELV) agreement. The culmination of a multi-year competition, NSSL Phase 2 calcified in late 2020 when the US military ultimately chose ULA and SpaceX as its primary launch providers for the better part of the next decade.
The final Phase 2 agreement followed Phase 1, in which the USAF committed up to $2.3 billion to assist Blue Origin, Northrop Grumman, and ULA in their efforts to develop future military launch capabilities. SpaceX submitted a proposal but didn’t win funds. Even though the ULA-SpaceX dichotomy was already a more or less fixed outcome before the competition even began, the US military still managed to dole out almost $800 million to Blue Origin and Northrop Grumman before announcing that neither provider had been selected for Phase 2.
Notably, as part of Phase 1, ULA is on track to receive nearly $1 billion in USSF/USAF aid to develop its next-generation Vulcan Centaur rocket and ensure that it meets all of the military’s exacting, unique requirements. SpaceX, on the other hand, received a sum total of $0 from that opaque slush fund to meet the exact same requirements as ULA.
For Phase 2, the US military arbitrarily split the roughly two-dozen launch contracts up for grabs into a 60/40 pile. Even more bizarrely, the USAF did everything in its power to prevent two of the three rockets it had just spent more than $1.7 billion to help develop from receiving any of those two or three-dozen available launch contracts – all but literally setting $800M of that investment on fire. Short of comical levels of blind ineptitude, verging on criminal negligence, the only possible explanation for the US military’s behavior with NSSL Phase 1 and Phase 2 is a no-holds-barred effort to guarantee that ULA and its Vulcan Centaur rocket would have zero real competition.
The arbitrary 60:40 split of the final Phase 2 contract ‘lot’ further supports that argument. A government agency objectively interested in securing the best possible value and redundancy for its taxpayer-provided money would logically exploit a $1.7B investment as much as possible instead of throwing two-thirds of its ultimate value in the trash. On its own, a block-buy scenario – even with a leading goal of selecting two providers – is fundamentally inferior to an open competition for each of the dozens of launch contracts at hand.
Further, selecting the block-buy option and failing to split those contracts 50:50 makes it even clearer that the USAF’s only steadfast NSSL Phase 2 goal was to guarantee ULA enough Vulcan launch contracts for the company to be comfortable and (most likely) not lose money on a rocket that has yet to demonstrate an ability to compete on the commercial launch market.

Amazingly, despite multiple handicaps in the form of a 60:40 contract split and what amounts to a $1B subsidy that explicitly disadvantages its only competitor, ULA’s Vulcan rocket still appears to be ~40% more expensive than SpaceX’s Falcon 9. In the latest round of NSSL Phase 2 contracts, seemingly the first in which ULA’s Vulcan Centaur rocket was selected, SpaceX’s Falcon 9 received two East Coast launch contracts worth slightly less than $160M, averaging out to less than $80M each.
Outfitted with four of a possible zero, two, four, or six strap-on solid rocket boosters (SRBs), Vulcan Centaur received two launch contracts for $224M – an average of $112M each. Assuming ULA wins exactly 60% (~15) of the Phase 2 launch contracts up for grabs and receives no more than $1 billion in USAF development funding through NSSL Phase 1, some $67 million will have to be added to the cost of each announced Vulcan launch contract to get a truly accurate picture. In the case of the rocket’s first two contracts, the real average cost of each Vulcan Centaur launch could thus be closer to $179M ($112M+$67M).

According to ULA CEO Tory Bruno, both Vulcan missions are to “high-energy orbits,” whereas a USAF official told Spaceflight Now that SpaceX’s two Falcon 9 contracts were to “lower-energy orbits.” In Vulcan’s defense, if Bruno’s “high-energy orbit” comment means a circular geostationary orbit (GEO) or a very heavy payload to an elliptical geostationary transfer orbit (GTO), it’s possible that SpaceX would have had to use Falcon Heavy to complete the same contracts. Against Falcon Heavy’s established institutional pricing and excluding ULA’s $1B Phase 1 subsidy, Vulcan Centaur is reasonably competitive.
Ultimately, even with several significant cards stacked against it, SpaceX appears likely to continue crushing entrenched competitors like ULA and Arianespace on cost while still offering performance and results equivalent to or better than even than their “next-generation” rockets.
News
Tesla FSD v14.2.2 is getting rave reviews from drivers
So far, early testers have reported buttery-smooth drives with confident performance, even at night or on twisty roads.
Tesla Full Self-Driving (Supervised) v14.2.2 is receiving positive reviews from owners, with several drivers praising the build’s lack of hesitation during lane changes and its smoother decision-making, among others.
The update, which started rolling out on Monday, also adds features like dynamic arrival pin adjustment. So far, early testers have reported buttery-smooth drives with confident performance, even at night or on twisty roads.
Owners highlight major improvements
Longtime Tesla owner and FSD user @BLKMDL3 shared a detailed 10-hour impression of FSD v14.2.2, noting that the system exhibited “zero lane change hesitation” and “extremely refined” lane choices. He praised Mad Max mode’s performance, stellar parking in locations including ticket dispensers, and impressive canyon runs even in dark conditions.
Fellow FSD user Dan Burkland reported an hour of FSD v14.2.2’s nighttime driving with “zero hesitations” and “buttery smooth” confidence reminiscent of Robotaxi rides in areas such as Austin, Texas. Veteran FSD user Whole Mars Catalog also demonstrated voice navigation via Grok, while Tesla owner Devin Olsen completed a nearly two-hour drive with FSD v14.2.2 in heavy traffic and rain with strong performance.
Closer to unsupervised
FSD has been receiving rave reviews, even from Tesla’s competitors. Xpeng CEO He Xiaopeng, for one, offered fresh praise for FSD v14.2 after visiting Silicon Valley. Following extended test drives of Tesla vehicles running the latest FSD software, He stated that the system has made major strides, reinforcing his view that Tesla’s approach to autonomy is indeed the proper path towards autonomy.
According to He, Tesla’s FSD has evolved from a smooth Level 2 advanced driver assistance system into what he described as a “near-Level 4” experience in terms of capabilities. While acknowledging that areas of improvement are still present, the Xpeng CEO stated that FSD’s current iteration significantly surpasses last year’s capabilities. He also reiterated his belief that Tesla’s strategy of using the same autonomous software and hardware architecture across private vehicles and robotaxis is the right long-term approach, as it would allow users to bypass intermediate autonomy stages and move closer to Level 4 functionality.
News
Elon Musk’s Grok AI to be used in U.S. War Department’s bespoke AI platform
The partnership aims to provide advanced capabilities to 3 million military and civilian personnel.
The U.S. Department of War announced Monday an agreement with Elon Musk’s xAI to embed the company’s frontier artificial intelligence systems, powered by the Grok family of models, into the department’s bespoke AI platform GenAI.mil.
The partnership aims to provide advanced capabilities to 3 million military and civilian personnel, with initial deployment targeted for early 2026 at Impact Level 5 (IL5) for secure handling of Controlled Unclassified Information.
xAI Integration
As noted by the War Department’s press release, GenAI.mil, its bespoke AI platform, will gain xAI for the Government’s suite of tools, which enable real-time global insights from the X platform for “decisive information advantage.” The rollout builds on xAI’s July launch of products for U.S. government customers, including federal, state, local, and national security use cases.
“Targeted for initial deployment in early 2026, this integration will allow all military and civilian personnel to use xAI’s capabilities at Impact Level 5 (IL5), enabling the secure handling of Controlled Unclassified Information (CUI) in daily workflows. Users will also gain access to real‑time global insights from the X platform, providing War Department personnel with a decisive information advantage,” the Department of War wrote in a press release.
Strategic advantages
The deal marks another step in the Department of War’s efforts to use cutting-edge AI in its operations. xAI, for its part, highlighted that its tools can support administrative tasks at the federal, state and local levels, as well as “critical mission use cases” at the front line of military operations.
“The War Department will continue scaling an AI ecosystem built for speed, security, and decision superiority. Newly IL5-certified capabilities will empower every aspect of the Department’s workforce, turning AI into a daily operational asset. This announcement marks another milestone in America’s AI revolution, and the War Department is driving that momentum forward,” the War Department noted.
News
Tesla FSD (Supervised) v14.2.2 starts rolling out
The update focuses on smoother real-world performance, better obstacle awareness, and precise end-of-trip routing, among other improvements.
Tesla has started rolling out Full Self-Driving (Supervised) v14.2.2, bringing further refinements to its most advanced driver-assist system. The new FSD update focuses on smoother real-world performance, better obstacle awareness, and precise end-of-trip routing, among other improvements.
Key FSD v14.2.2 improvements
As noted by Not a Tesla App, FSD v14.2.2 upgrades the vision encoder neural network with higher resolution features, enhancing detection of emergency vehicles, road obstacles, and human gestures. New Arrival Options let users select preferred drop-off styles, such as Parking Lot, Street, Driveway, Parking Garage, or Curbside, with the navigation pin automatically adjusting to the user’s ideal spot for precision.
Other additions include pulling over for emergency vehicles, real-time vision-based detours for blocked roads, improved gate and debris handling, and extreme Speed Profiles for customized driving styles. Reliability gains cover fault recovery, residue alerts on the windshield, and automatic narrow-field camera washing for new 2026 Model Y units.
FSD v14.2.2 also boosts unprotected turns, lane changes, cut-ins, and school bus scenarios, among other things. Tesla also noted that users’ FSD statistics will be saved under Controls > Autopilot, which should help drivers easily view how much they are using FSD in their daily drives.
Key FSD v14.2.2 release notes
Full Self-Driving (Supervised) v14.2.2 includes:
- Upgraded the neural network vision encoder, leveraging higher resolution features to further improve scenarios like handling emergency vehicles, obstacles on the road, and human gestures.
- Added Arrival Options for you to select where FSD should park: in a Parking Lot, on the Street, in a Driveway, in a Parking Garage, or at the Curbside.
- Added handling to pull over or yield for emergency vehicles (e.g. police cars, fire trucks, ambulances).
- Added navigation and routing into the vision-based neural network for real-time handling of blocked roads and detours.
- Added additional Speed Profile to further customize driving style preference.
- Improved handling for static and dynamic gates.
- Improved offsetting for road debris (e.g. tires, tree branches, boxes).
- Improve handling of several scenarios, including unprotected turns, lane changes, vehicle cut-ins, and school buses.
- Improved FSD’s ability to manage system faults and recover smoothly from degraded operation for enhanced reliability.
- Added alerting for residue build-up on interior windshield that may impact front camera visibility. If affected, visit Service for cleaning!
- Added automatic narrow field washing to provide rapid and efficient front camera self-cleaning, and optimize aerodynamics wash at higher vehicle speed.
- Camera visibility can lead to increased attention monitoring sensitivity.
Upcoming Improvements:
- Overall smoothness and sentience.
- Parking spot selection and parking quality.