Connect with us

News

Follow a SpaceX Falcon 9 Block 5 booster recovery from start to finish [video]

Falcon 9 B1047.2 lands aboard drone ship OF Course I Still Love You for the second time. (SpaceX)

Published

on

All major aspects of SpaceX’s most recent Falcon 9 Block 5 booster recovery have been documented from start to finish, offering a solid glimpse into the work that actually goes into getting a rocket booster from the deck of a SpaceX drone ship to one of the company’s many hangars for inspections, repairs, and refurbishment.

Filmed by USLaunchReport, a SpaceX-focused nonprofit staffed by U.S. veterans, the group’s coverage of a variety of SpaceX events may not always offer the highest production quality, but the sheer tenacity and patience of those behind the cameras allow them to capture unique and interesting events that almost nobody else is keen to wait around for.

Over the course of four videos focused on SpaceX’s recovery of Falcon 9 Block 5 booster B1047, USLaunchReport offered good views of four major events that occur during all rocket recovery operations: the drone ship’s return to port, Falcon 9’s move from ship to shore, the booster’s landing leg removal (or retraction), and the booster’s transfer from a vertical to horizontal orientation and transport by road back to a SpaceX hangar.

Advertisement
-->

Of Course I Still Love You arrives at Port Canaveral

As with all of Falcon 9’s drone ship landings, B1047 came to a rest on a station-keeping OCISLY several hundred miles east of the Florida coast, coincidentally landing directly in front of a giant rainbow cued by rain clouds, both visible in the background. In theory, B1047’s second landing should by no means be the rocket’s last: if Falcon 9 Block 5’s first stage upgrades are as successful as they hoped to be, the rocket could well see a productive life of 100 launches or more between now and BFR’s complete takeover.

 

For at least the next 5-10 years, however, SpaceX followers will continue to be treated to spectacular Falcon 9 and Falcon Heavy booster recoveries, particularly the moment when each booster sails through the narrow mouth of Port Canaveral or Port of Los Angeles, offering spectators almost unbeatable views of just-landed SpaceX rockets.

Advertisement
-->

Falcon 9’s lift from ship to shore

Soon after the drone ship docks in port, SpaceX recovery technicians install a brace and lifting jig that attaches to Falcon 9’s booster interstage, using the same mechanisms that connect the first stage to the second stage prior to stage separation. The interstage’s mechanical actuators are strong enough to support – at a minimum – the entire weight of an empty Falcon 9 booster, allowing SpaceX to simply attach the jig and lift Falcon 9 off of the drone ship with any number of large but commercially available cranes.

Rather than directly lowering the rocket and allowing it to rest directly on its landing legs again, SpaceX technicians make use of a custom-built stand that acts as a sort of barebones, static replica of the mounts Falcon 9s are attached to at SpaceX launch pads. Structurally optimized to allow Falcon 9 and Heavy to be held down on the launch pad while operating at full thrust, a series of four solid-metal attachment points interface with those hold-down clamps, attach to Falcon 9’s four landing legs, and offer an easily accessible and structurally sound method of sitting a booster upright (sans legs) and maneuvering it during recovery operations.

 

Once Falcon 9 is sat stably atop its recovery stand, SpaceX technicians remove the rocket’s four landing legs and their associated telescoping deployment assemblies. While SpaceX has recently begun to attempt the in-situ retraction and stowage of Falcon 9 landing legs once returned to land, a number of experimental retraction attempts appear to have produced less than satisfactory results. This time around, the retraction jig was visibly stripped and SpaceX technicians did not attempt any leg retractions. However, those recovery technicians are now so experienced and familiar with the optimized procedures that Falcon 9 booster can go from port arrival to horizontal transport to a SpaceX hangar in just a little over 48 hours, and that trend continued with B1047.2.

From | to __

Although Falcon 9 and Heavy rockets come into their prime once vertical, the rockets spend the vast majority of their lives horizontal, either in transport from facility to facility or stationary inside a SpaceX hangar, awaiting launch, undergoing integration, or being refurbished. Translating Falcon 9’s massive ~30-ton, 135-foot-tall (41m) booster from vertical to horizontal is a feat within itself, requiring the coordinated use of two large cranes, multiple technicians with guidelines, and one of several giant booster transport jigs owned by SpaceX.

SpaceX’s seasoned recovery technicians make it look easy, but the reality is in almost polar opposition. The fact that Falcon 9’s structure is built primarily of aluminum-lithium alloy tanks with walls maybe half a centimeter (~5 mm) thick certainly doesn’t make this process any easier, as even the slightest misstep or tank depressurization (Falcon 9 is almost always pressurized with nitrogen when horizontal) could structurally compromise the rocket and result in irreparable damage.

The cherry on top

A reliable crowdpleaser, the last critical step in any Falcon 9 or Falcon Heavy recovery is the booster’s careful transport – by road – from its port of call (or landing zone) to a dedicated SpaceX hangar (or factory), where the rocket can be far more thoroughly inspected, repaired, and maintained between launches. With Falcon 9 Block 5’s May 2018 introduction, the latter segment has become more important than ever before, as the upgraded rockets are already routinely conducting launches with as few as three months between them, bringing SpaceX closer than ever before to realizing a long-term aspiration of operating a fleet of rapidly and (relatively) easily reusable orbital-class rockets.

Advertisement
-->

Often slowly driving just a few dozen feet from passing bystanders and traffic, this short few-mile trip from Port Canaveral to either Kennedy Space Center (KSC) or Cape Canaveral Air Force Station (CCAFS) is typically done with Falcon 9 boosters entirely uncovered, aside from nine small booties that cover their nine Merlin 1D engines. Without unique and easily missed moments like this, it might well be just shy of impossible to get fewer than several hundred feet away from an operational SpaceX rocket, certainly a luxury but one that would still be sorely missed.

All things considered, the crew at USLaunchReport ought to be thanked for their relentless patience and commitment to getting the shot. For those of us who mean to resist the tendency for SpaceX’s sheer inertia to rapidly make the extraordinary all but mundane, these long, highly detailed, and often esoteric videos will (hopefully) never get old.


For prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket recovery fleet check out our brand new LaunchPad and LandingZone newsletters!

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Tesla’s Elon Musk: 10 billion miles needed for safe Unsupervised FSD

As per the CEO, roughly 10 billion miles of training data are required due to reality’s “super long tail of complexity.” 

Published

on

Credit: @BLKMDL3/X

Tesla CEO Elon Musk has provided an updated estimate for the training data needed to achieve truly safe unsupervised Full Self-Driving (FSD). 

As per the CEO, roughly 10 billion miles of training data are required due to reality’s “super long tail of complexity.” 

10 billion miles of training data

Musk comment came as a reply to Apple and Rivian alum Paul Beisel, who posted an analysis on X about the gap between tech demonstrations and real-world products. In his post, Beisel highlighted Tesla’s data-driven lead in autonomy, and he also argued that it would not be easy for rivals to become a legitimate competitor to FSD quickly. 

“The notion that someone can ‘catch up’ to this problem primarily through simulation and limited on-road exposure strikes me as deeply naive. This is not a demo problem. It is a scale, data, and iteration problem— and Tesla is already far, far down that road while others are just getting started,” Beisel wrote. 

Musk responded to Beisel’s post, stating that “Roughly 10 billion miles of training data is needed to achieve safe unsupervised self-driving. Reality has a super long tail of complexity.” This is quite interesting considering that in his Master Plan Part Deux, Elon Musk estimated that worldwide regulatory approval for autonomous driving would require around 6 billion miles. 

Advertisement
-->

FSD’s total training miles

As 2025 came to a close, Tesla community members observed that FSD was already nearing 7 billion miles driven, with over 2.5 billion miles being from inner city roads. The 7-billion-mile mark was passed just a few days later. This suggests that Tesla is likely the company today with the most training data for its autonomous driving program. 

The difficulties of achieving autonomy were referenced by Elon Musk recently, when he commented on Nvidia’s Alpamayo program. As per Musk, “they will find that it’s easy to get to 99% and then super hard to solve the long tail of the distribution.” These sentiments were echoed by Tesla VP for AI software Ashok Elluswamy, who also noted on X that “the long tail is sooo long, that most people can’t grasp it.”

Continue Reading

News

Tesla earns top honors at MotorTrend’s SDV Innovator Awards

MotorTrend’s SDV Awards were presented during CES 2026 in Las Vegas.

Published

on

Credit: Tesla China

Tesla emerged as one of the most recognized automakers at MotorTrend’s 2026 Software-Defined Vehicle (SDV) Innovator Awards.

As could be seen in a press release from the publication, two key Tesla employees were honored for their work on AI, autonomy, and vehicle software. MotorTrend’s SDV Awards were presented during CES 2026 in Las Vegas.

Tesla leaders and engineers recognized

The fourth annual SDV Innovator Awards celebrate pioneers and experts who are pushing the automotive industry deeper into software-driven development. Among the most notable honorees for this year was Ashok Elluswamy, Tesla’s Vice President of AI Software, who received a Pioneer Award for his role in advancing artificial intelligence and autonomy across the company’s vehicle lineup.

Tesla also secured recognition in the Expert category, with Lawson Fulton, a staff Autopilot machine learning engineer, honored for his contributions to Tesla’s driver-assistance and autonomous systems.

Tesla’s software-first strategy

While automakers like General Motors, Ford, and Rivian also received recognition, Tesla’s multiple awards stood out given the company’s outsized role in popularizing software-defined vehicles over the past decade. From frequent OTA updates to its data-driven approach to autonomy, Tesla has consistently treated vehicles as evolving software platforms rather than static products.

Advertisement
-->

This has made Tesla’s vehicles very unique in their respective sectors, as they are arguably the only cars that objectively get better over time. This is especially true for vehicles that are loaded with the company’s Full Self-Driving system, which are getting progressively more intelligent and autonomous over time. The majority of Tesla’s updates to its vehicles are free as well, which is very much appreciated by customers worldwide.

Continue Reading

Elon Musk

Judge clears path for Elon Musk’s OpenAI lawsuit to go before a jury

The decision maintains Musk’s claims that OpenAI’s shift toward a for-profit structure violated early assurances made to him as a co-founder.

Published

on

Gage Skidmore, CC BY-SA 4.0 , via Wikimedia Commons

A U.S. judge has ruled that Elon Musk’s lawsuit accusing OpenAI of abandoning its founding nonprofit mission can proceed to a jury trial. 

The decision maintains Musk’s claims that OpenAI’s shift toward a for-profit structure violated early assurances made to him as a co-founder. These claims are directly opposed by OpenAI.

Judge says disputed facts warrant a trial

At a hearing in Oakland, U.S. District Judge Yvonne Gonzalez Rogers stated that there was “plenty of evidence” suggesting that OpenAI leaders had promised that the organization’s original nonprofit structure would be maintained. She ruled that those disputed facts should be evaluated by a jury at a trial in March rather than decided by the court at this stage, as noted in a Reuters report.

Musk helped co-found OpenAI in 2015 but left the organization in 2018. In his lawsuit, he argued that he contributed roughly $38 million, or about 60% of OpenAI’s early funding, based on assurances that the company would remain a nonprofit dedicated to the public benefit. He is seeking unspecified monetary damages tied to what he describes as “ill-gotten gains.”

OpenAI, however, has repeatedly rejected Musk’s allegations. The company has stated that Musk’s claims were baseless and part of a pattern of harassment.

Advertisement
-->

Rivalries and Microsoft ties

The case unfolds against the backdrop of intensifying competition in generative artificial intelligence. Musk now runs xAI, whose Grok chatbot competes directly with OpenAI’s flagship ChatGPT. OpenAI has argued that Musk is a frustrated commercial rival who is simply attempting to slow down a market leader.

The lawsuit also names Microsoft as a defendant, citing its multibillion-dollar partnerships with OpenAI. Microsoft has urged the court to dismiss the claims against it, arguing there is no evidence it aided or abetted any alleged misconduct. Lawyers for OpenAI have also pushed for the case to be thrown out, claiming that Musk failed to show sufficient factual basis for claims such as fraud and breach of contract.

Judge Gonzalez Rogers, however, declined to end the case at this stage, noting that a jury would also need to consider whether Musk filed the lawsuit within the applicable statute of limitations. Still, the dispute between Elon Musk and OpenAI is now headed for a high-profile jury trial in the coming months.

Continue Reading